Youtube comments of driving 4 answers (@d4a).
-
1900
-
Motivation: https://www.youtube.com/channel/UCt3YSIPcvJsYbwGCDLNiIKA
This is definitely not your typical d4a video but I think these are important and relevant issues that impact all of us. So I felt a strong urge to speak about the subject openly, in a logical, unbiased and rational manner. This is not a signal of any change of direction for this channel, but as a creator I will not abandon my freedom to dip into other topics because of the possibility of upsetting people that expect exclusively a certain type of content and may choose to unsubscribe if they see something unexpected. This channel is not a media machine with editors, researchers, interns, cameramen etc. This is genuinely a one-man show that is fueled by passion and curiosity. I am the researcher, the script writer, the presenter, the camera-man, the editor. Yes, it's a lot more work but it also means that I only have to finance myself and not an entire team. The bonus I get is greater creative freedom and a lack of constraint to always produce exclusively view-maximizing and sponsored content. I know that many of you understand and appreciate this, and for that I am very grateful.
1500
-
1300
-
828
-
781
-
757
-
631
-
630
-
547
-
494
-
452
-
440
-
406
-
371
-
360
-
348
-
328
-
302
-
282
-
261
-
258
-
256
-
253
-
251
-
246
-
245
-
223
-
210
-
209
-
205
-
205
-
198
-
196
-
193
-
191
-
186
-
185
-
178
-
172
-
170
-
167
-
165
-
160
-
158
-
158
-
157
-
153
-
153
-
151
-
151
-
149
-
147
-
147
-
145
-
145
-
141
-
138
-
137
-
136
-
133
-
132
-
131
-
131
-
129
-
127
-
127
-
124
-
123
-
122
-
116
-
116
-
115
-
112
-
109
-
106
-
102
-
100
-
100
-
99
-
99
-
99
-
97
-
94
-
94
-
92
-
92
-
89
-
89
-
89
-
88
-
88
-
87
-
85
-
82
-
79
-
79
-
79
-
78
-
78
-
77
-
77
-
77
-
76
-
75
-
74
-
74
-
72
-
70
-
69
-
68
-
68
-
68
-
67
-
67
-
67
-
66
-
66
-
65
-
64
-
64
-
64
-
64
-
64
-
62
-
62
-
61
-
61
-
61
-
60
-
60
-
60
-
60
-
59
-
59
-
58
-
58
-
57
-
57
-
57
-
56
-
56
-
55
-
55
-
54
-
54
-
53
-
53
-
53
-
53
-
53
-
52
-
51
-
51
-
51
-
51
-
50
-
50
-
48
-
48
-
48
-
47
-
46
-
46
-
45
-
45
-
45
-
45
-
44
-
44
-
43
-
42
-
42
-
41
-
40
-
40
-
40
-
40
-
40
-
39
-
39
-
39
-
38
-
38
-
37
-
37
-
36
-
36
-
36
-
35
-
35
-
35
-
35
-
34
-
34
-
34
-
34
-
34
-
34
-
34
-
34
-
34
-
34
-
34
-
34
-
34
-
34
-
33
-
33
-
32
-
32
-
32
-
32
-
32
-
32
-
32
-
32
-
32
-
32
-
32
-
31
-
31
-
31
-
31
-
30
-
30
-
30
-
30
-
29
-
29
-
29
-
28
-
28
-
28
-
28
-
28
-
28
-
27
-
27
-
27
-
Thanks, glad you liked the video. When it comes to an engine rebuild parts list, It's really not as simple as that. It really depends on the condition of your engine and what you want to do. So, a proper list of parts is possible only when you know exactly what you want to do with the engine and you have a taken the engine apart and had it examined by a professional. Here's a list that's more of a guide from the top of my head. I suggest you take a seat.
1. Service parts - what must be replaced
- All the gaskets. There is a complete engine gasket overhaul kit still available from Toyota dealers. I highly recommend Toyota gaskets. This comes with valve guide seals and a new head gakset, which you won't use if you decide to go for a thinner head gasket for more compression
- New timing belt (available from Toyota or elsewhere)
- New v-belt
- New thermostat
- New oil filter
- New fuel filter
- New air filter
- New vacuum hoses, many will be cracked
- New spark plugs
- New distributor cap and rotor (if you are keeping the distributor and not going with a standalone ecu)
- New radiator cap
- New coolant (duh)
- New oil (duuuuuh?!)
2. Service parts - optional
- Distributor rebuild kit if you are keeping keeping the dizzy and it's bad (this can be hard to fin. I know it's available from this guy for aw11 4age distributors, maybe other 4age ones as well: http://www.mk1mr2.webs.com/)
- New coolant hoses, maybe upgrade to some silicone ones
- New radiator
- New spark plug wires (more often a must then optional)
- New main bearings (this is a must if you ask me, but if the bearings are in great condition ppl might tell you they are fin and you can leave them be)
- New rod bearings (this too is a must if you ask me, but if the bearings are in great condition ppl might tell you they are fine and you can leave them be)
- New valve guides
2. Machine work - must
- Valve seats
- Valves
- Head machined
- Block machined
- Crankshaft polished (don't take off too much if the crankshaft is good, just a bit goes a long way)
- If the block is really good you can just re-hone it and get new piston rings. But since the engine is apart anyway I would bore it and get new oversize pistons and rings anyway. If you're doing it, do it right.
3. Machine work - optional
- Block bored - more often a must then optional if the engine has never been machined before. If you bore the block you will need new pistons and piston rings too
- Crankshaft ground if it's bad
- Connecting rods resized
- Main bearing caps resized (this is called line boring the block I believe)
4. Performance stuff, optional of course
- New camshafts
- New performance valve springs
- High compression pistons, forged if you want to go forced induction
- Thin head gasket for more compression
- Adjustable cam gears
- Bigger valves
- Second mortgage
- aftermarket ECU
- Forged connecting rods
- A lighter flywheel
- bike carbs?
- A turbo maybe?
- Did you sign the divorce papers yet?
You're welcome. And I probably forgot quite a few things. Also let me open up another Pandora's box for you: How's your transmission?
27
-
27
-
27
-
26
-
26
-
26
-
26
-
25
-
25
-
25
-
25
-
25
-
25
-
24
-
24
-
24
-
24
-
24
-
24
-
23
-
23
-
23
-
23
-
23
-
23
-
23
-
22
-
22
-
22
-
22
-
22
-
22
-
22
-
22
-
22
-
22
-
22
-
22
-
21
-
21
-
21
-
21
-
21
-
21
-
21
-
21
-
21
-
20
-
20
-
20
-
20
-
20
-
20
-
20
-
20
-
20
-
19
-
19
-
19
-
19
-
19
-
19
-
19
-
19
-
18
-
18
-
18
-
18
-
18
-
18
-
18
-
17
-
17
-
17
-
17
-
17
-
17
-
17
-
17
-
17
-
17
-
17
-
17
-
17
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
15
-
15
-
15
-
15
-
15
-
15
-
15
-
15
-
15
-
15
-
14
-
14
-
14
-
14
-
14
-
14
-
14
-
14
-
14
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
12
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
Livestream:
Sunday 15th of April - 4:30 p.m. GMT
That's:
09:30 a.m. Los Angeles, Vancouver, Phoenix
11:30 a.m. Chicago, Mexico City,
12:30 p.m. New York, Montreal, Detroit
01:30 p.m. Buenos Aires, Halifax
5:30 p.m. London, Dublin
6:30 p.m. Madrid, Berlin, Prague, Zagreb, Sarajevo, Belgrade,
7:30 p.m. Moscow, Riyadh, Nairobi,
12:30 a.m. (16th of April) - Singapore, Hong Kong, Manila, Perth
01:30 a.m. (16th of April) - Tokyo, Seoul
02:30 a.m. (16th of April) - Sydney, Melbourne, Brisbane
We are almost there. Stay tuned for full detailed videos of the Nodiz install, AEM wideband install, of the PCV and fuel supply systems.
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
LS is a very major engine. You'll notice that I haven't covered any of the big ones. 2jz, 13b, RB, k20, LS, small block, m52, etc. I'm taking my time with the famous engines because so much has been said about them already. I will of course cover these engines in due time, some very soon actually, but I'm also focused on covering engines that haven't been in the spotlight so much, even though they deserve it.
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
Sound, throttle response, looks awesome, will get me like 3 hp. Maybe. Downsides? Not easy to tune, kinda fiddly, can't install and forget about it like fuel injection, mpg will decrease. But I don't care about the downsides, this is not my daily driver, I am willing to learn, and simply want to try out some bike carbs :) Google car engines on bike carbs, once you hear them you will know what I mean.
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
Yes, that's a very important observation, because the rods are stacked the way they are there's no rocking couple. Secondary is very close to v4 but I think it's only slightly worse in terms of secondary balance than a v4, probably irrelevant. We have two at TDC, so that's two forces up, two at maximum velocity, so that's two forces down, and the odd cylinder a bit past max velocity so that's another force down-ish.... So not two up two down like the v4. The v angle is different too so they again don't fully cancel out, just like in the v4, but they're also not perpendicular to each other, which should work a bit in favor of the v5. But all of this is hair splitting, the secondary balance is smallish anyway l, especially on a 990cc thing with tiny pistons (tinnier than a v4 mind you, maybe they're the same overall for secondary) and it's overall miles ahead of a flat plane inline 4.
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
ย @DMSBrian24ย I totally get what you're saying. I'm gonna make a video in the rain one day too. Yes, it is a lot trickier to catch it in the rain, but any rwd drive car requires a bit of advanced driving in the rain. I mean, let's be reasonable, if you don't have experience and decide to attack corners hard during rain in a rwd car....you're really just asking for it. This parking lot was a bit of a challenge too, the loose gravel really helped with the snap effect, not nearly as much as the rain of course, but still. You're also right when it comes to the terminology, lift off oversteer and snap oversteer are technically not one and the same, but absolutely everyone calls it snap oversteer so I really had to use that word otherwise the youtube algorithm will just ignore the video, and the people that are supposed to see it, won't see it :) Btw, I'm really impressed what you did there with all the time codes, thanks a lot for watching!
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
That is a fair point. Before I decided to go with danST I did browse around for a used set. I looked at a few sets from junkyards and one from a private seller. Honestly, the junkyard ones were horrible and would need so much cleaning it's unreal. They needed all new gaskets and one set had damaged floats. I was lucky the junkyard owners would leave me unattended so I could take a really detailed look. The carbs were around 60-70 usd but needed at least another 100 to get them into decent shape. The carbs from the private seller were better but he was parting out his crashed bike and wanted to sell the engine as a whole and asked 120 for the carbs. The danst carbs do cost more when you calculate the price but they were A LOT cleaner than any of these and all the gaskets were in perfect condition, throttle plates and bores have almost no wear at all on them, and they came with brand new 160 main jets, which is like 25-30 usd. So, yes, you might save some money buying carbs from somewhere else, but you need take into account the time and money you will spend shopping around and restoring them and the fact that you know are getting a good set from dan. The danST ones were definitely ok, no major dirt anywhere, not as clean as they are now, but to be honest I did want to take apart this set and dive deeper into the carbs as I am becoming really fond of carburetors in general.
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
A bit of insight for you to put things into perspective :) . Donut media is a whole team of people with a very sizable budget and high-end equipment. Camera people, researchers, hosts, video editors, audio guys, etc. Everybody seems to be seriously talented and the content really is top notch. This whole thing is just me. I do absolutely everything. The research, the scripting, the recording, the talking, the video editing. So I have to say I'm very flattered I'm being compared to donut media, but don't be spoiled :)
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
I have not claimed in any part of the video that the rings support the weight. The wheel hubs support the weight, but if there is a gap between the wheel and wheel hub than the hubs can not support the weight, in which case the bolts/lugs end up supporting the weight, and that's not something they should be doing. The hub centric rings make sure there is not gap and transfer the weight support from the lugs to the wheel hub.Without the rings the wheel constantly moves a very tiny amount off center as you are driving because wheel bolts are not meant to support the weight of the car. They of course can do it, but that doesn't mean they should. You can drive on summer tires in winter, but that doesn't mean you should. The nuts and bolts fight against the lateral forces on the wheels, they are not meant to do the job of the wheel hub. If that were the case, manufacturers would not waste money making the hub, and would not care whether the wheel hub bore and the wheel hub are the same size, and hub centric rings would not exist. Look at the stock wheels on any car, they always fit 100% flush on the wheel hub, there is never any gap.Therefore, centering the wheel is definitely not the only job of the hub centric rings. Sorry for the lengthy reply.
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
If it's an iron block definitely paint it, otherwise it will rust and look less presentable. It will take a century to rust through but definitely paint it, there's no downside and it won't hurt anything. There's a link to a good block paint in the pinned comment, por-15, used it myself, works great. If it's an aluminum block I wouldn't paint it, aluminum doesn't rust and I think aluminum blocks look a bit weird when painted. A clean aluminium block looks best in my subjective opinion. But painting it still won't significantly influence heating, cooling, "breathing" or whatever else. That being said, painting aluminum is a bit more tricky than iron, and you'll likely need a self-etching primer or similar. I'm not a painting expert so definitely research that. :)
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
idontcare80 allow me to explain. Fuel injection as a concept is of course better than carburetors, but in the real world it's not that simple and there are many more factors to be taken into account. First of all, the fuel injection system in my and similar cars is now 30 years old and has fallen victim to time and a whole legion of idiot previous owners who wanted a cool sports car but somehow imagined maintaining it would cost as much as maintaining a bicycle and often repaired faults with junkyard parts...the wrong ones. As such my engine had the wrong distributor, the wrong throttle body, which caused a vacuum leak between it and the manifold. It also had a cold start injector that liked to get stuck open. The intake air control valve is busted on all of these engines. A replacement does not exist and the only solution is to block it off, and then you have to keep your foot on the accelerator to keep the engine from stalling until it warms up. Etc. Etc. On the other hand, I had nothing but fun with the carbs so far. Once you figure them out they are really straightforward and far easier to diagnose and fix if you're an enthusiast. All you need is a screwdriver. Zero wires. No egr, no afm, no dozen of aging components that are just waiting to fail. All you have to worry about are two jets, one needle and a pilot adjustment screw. Tuning was relatively straightforward forward too. Runs rich? Get a smaller jet. Runs lean? Get a bigger jet. Idle is now rock solid with the carbs, engine starts at the first flick of the key and response seems to be amazing. Plus the sound is beyond words. Mpg will probably be worse, but who cares, I never planned to drive this thing to work and back, it's a machine tasked with a single mission - putting a smile on my face. So yes, fuel injection has carbs beat on paper but when you take into account real world factors and the application of my particular project all I can say is that I am loving the carbs so far :) hope this clears it up a bit.
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
I'm sorry but I doubt it that you're very familiar with this engine. I really don't mean to insult or be rude but all I see here is just a collection of forum wisdom that has survived for decades only thanks to uninformed repetition. Allow me to correct you.
All 7rib 4A blocks are virtually identical. 4AGE, GZE, 2nd gen FE, etc. It's the exact same block, the only major difference being the machining for the squirters. I clearly explained in the video why I decided to machine instead of trying to find a pre-machined block. Yes, the G crankshaft is stronger and had you watched the video you would have seen that's exactly what I installed. Together with forged rods and GZE pistons. Not all 4AGE engines have squirters, only the smallport. Only the 20v engine has variable intake valve timing, none of the other engines have adjustable anything on the cams unless you install it yourself. And even with that it's still fixed timing. Yes, you can adjust cams independently on the G heads buts there's minimal gains from this with boost. The 2nd 4AFE actually has more aggressive cams than all the bigport 4AGE engines. The heads have been tested for flow several times and the 4AGE has marginally more flow only at the highest valve opening. The 2nd gen 4AFE has vastly superior intake ports and better oil draining. The exhaust ports are very much similar and the 4AGE has better combustion chambers. Here's a video in case you're interested https://youtu.be/Ea5G0Jnvum0
I'll refrain from commenting on the boost pressure number and expected power as predicting power with a single variable is like predicting the weather with sheep innards. The torque curve and driveability heavily depends on tuning and there's numerous boost control strategies to make the torque curve useable and non ridiculous. Boost by gear, switchable maps and many other things I will be exploring and employing using my AEM infinity 5 standalone ECU. Unfortunately your comment is the straw that broke the camel's back for me after a sea of similar comments with unsolicited advice on what's the "reasonable" choice based on forum wisdom. As you can obviously see this is a YouTube channel that isn't some sort of personal vlog. I'm interested in bringing useful and educational content and creating value. What value is there in doing something that has been done a million times already? Isn't it more valuable to explore a new path and bring new data and see the performance of an engine that hasn't been built a million times already. The 4afe is dramatically more affordable and plentiful than the 4age, yet offers almost all the same benefits, so if I manage to demonstrate it's potential I'll be giving proof of a very attractive alternative. Just out of curiosity, since you're advising me against it and are "very familiar" with it, tell me honestly, have you ever built a single 4afe? Or is the advice just based on the fact that G stands for "performance" in Toyota's nomenclature?
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
Let me try a different approach, forget me. Let's take automotive journalists, big names like Clarkson or Chris Harris or similar. They have driven more cars than anyone and you'll see that in the vast majority of cases they enjoy older machines. Also, there's a point where the only benefit of more performance is bragging rights and impressive numbers. This is precisely why modern high powered cars have so many driver aids, because we have long past the point of what an average driver can handle and harness. By the logic of more performance equals more engagement, hypercars should equal the most engagement? But they don't, they're absolutely useless on the street and you're driving at 10% of their potential. The only place you can enjoy them is on the track, and even there they will overwhelm 95% of drivers. But forget hypercars, let's look at something more realistic, a hot hatch with something like 300hp. My opinion is that driving happens on a twisty road. When it comes to 300hp on a twisty road in the real world, you can't really use them. You'll go wot at a few corner exists, and the odd straight and that's it. You'll be breaking traffic and safety laws and the limits of your courage and rationality within seconds. Sure it's great fun on the track, but how often can you go to the track? So in my opinion on a twisty road in the real world a 205 gti is actually more engaging than a modern hot hatch. It's got three times less performance in every aspect but it's more engaging and more useable. It's more engaging because you can actually drive the car at its limit and use all the skills you have to squeeze the most performance out of it. That's engagement. Where can you drive a modern hot hatch at its limit other than the track or the highway? And when you do drive it at its limit, 95% of cars owners can't really handle it and make the most of it.
The C7 is a poor example and we're entering semantics here. What is a different car? But again, the difference between a base c7 and the top model and the difference between the base model focus and the RS is very large. I don't even remember why we started this base vs top spec car anymore? As I said, it might be prejudice, I don't know you, or you're driving experience or the cars you've driven or anything. But I did base my assumption on two things. The first is the old cars and vibe thing :) (that ticked me off lol low-key making it a hipster thing) and the second is something that's the shared experience of the entire car community. Cars have gained a lot of performance over the decades, no doubt about that, but they have also lost a lot of things too. There's a reason why so many old platforms are still so popular and sought after and why people watch videos like these although these engines are practically ancient and obsolete compared to modern stuff.
2
-
You mentioned something very important and a bit contradictory. Engagement. More hp doesn't mean more engagement. So between a 2020 hot hatch with 300+ hp and the e30 m3, the 2020 car should be more engaging, but it rarely is. Electronic power steering, dozens of driver aids, drive by wire and more stand in the way of actual engagement. Older cars aren't just about the "vibe", ask anyone who genuinely enjoys driving. It's about engagement, being analogue, makes them extremely engaging. I have driven both older and newer cars hard, and hp and engagement are rarely proportional. Look, I get what you're saying but the RS and the M3 aren't options or optioned out versions of the base car, they're different cars, targeted at entirely different market segments than the base car. The RS only looks like the base model, but other than that they can't even be compared. The suspension, the brakes, the chassis reinforcements, the awd system, pretty much everything is very very different. Same goes with the m3. I'm going to say something, it might very well be prejudice, but I think you're someone who enjoys and loves cars, but you have yet to sink your teeth all the way in :) Again, no harm meant, I'm enjoying this dialogue.
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
Oh look, a fanboy. I know the video went over your head, but there's no need to throw a hissy fit and embarrass yourself. Instead calm down, regroup and try to understand it again. I'll help you a bit. The VR5 and the V5 are apples and oranges. When the angle is so narrow and the pistons are closer together the balance is very similar to that of an inline five. There's no revolutionary or out of the box thinking required to balance out an inline 5 because it has been done decades before. Lancia did the whole VR thing long before VW btw. Also, tungsten weights and other crank weights of even more exotic materials are nothing new, but more importantly they are also unrelated to the kind of balance I'm talking about in the video. VW did not pioneer W engines, this too was done many decades before. This video isn't about Honda or VW or any other brand. Although this may be hard for you to perceive, many people, including myself, aren't emotionally attached to brands. We're not associated with or employed or paid by them, we simply purchase their products when we believe they offer a good balance of price and quality. You should try it too, you'll be a lot happier and you'll also avoid future embarrassment ๐ Thanks for watching
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
Look, I know this is a very hotly debated topic, but harmonics will not "destroy" an engine. Yes an ATI or BHJ crank pulley is better than the one I am running, and yes an engine with those pulleys will likely last longer. But that doesn't mean an engine with a pulley like mine will just fall apart. The effect of harmonics, on a well built engine, becomes apparent only after many thousands of miles. I will likely go very bored of this engine and will want to build something else long before the harmonics will have any chance to destroy anything. This is not a daily driven car, if it was I might have gone with ATI or BHJ. This is not a 10.000 USD engine, if it was, I might have gone with ATI or BHJ. But as things are right now, this is a fully acceptable solution. If it kills the engine, we will know, and I will post about it and then lightweight pulleys are truly the devil and no one should ever run them at any time ;)
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
Not dumb at all. An extra 4age or any engine for that matter is a great learning opportunity. I had an awesome time putting my 4age back together and I picked up knowledge and skills while doing it that I would never have picked up otherwise. Real hands on tangible experience is second to nothing, plus it's really really fun. If you want to dive into engine mechanics here's what I would do:
1. Get a copy of the aw11 (first gen Toyota MR2) BGB, big green book, aka the factory service manual. It has absolutely everything in it that you need to know about that engine. If you're 4age is from another car find that car's BGB.
2. Get an engine stand (you can get a nice one for like 100$ or so I think).
3. Take the engine apart step by step at your own pace. Pack the parts you remove and their corresponding bolts into individual bags and label them.
4. Once you take everything apart and have the bare block, cylinder head, crankshaft, rods and pistons take it to a reputable machine shop along with all the measures and clearances from the BGB. Have the rods resized, bore the block over, get oversize pistons, have the crankshaft turned if needed.
5. Buy an engine overhaul gasket kit from Toyota (part number is 04111-16072 if your 4age is from an aw11. If your 4age is from another car use https://www.toyodiy.com/parts/ to find out all the part numbers you might need.
6. Buy new main and rod bearings according to BGB specs and what your machine shop guy tells you. Clean all the parts you removed, if you want it looking fancy have them blasted/galvanized/powder coated or whatever else you're into.
7. Watch this video to get yourself motivated: https://youtu.be/Nw2UJnnqs9Y
8. Put it all back together.
9. Find a car to put your new awesome engine back into.
10 fire it up and drive it and have the biggest smile on your face ever knowing that you're driving a car whose awesome little rev-happy engine you put together with your own two hands
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
Well it depends, but if we assume an identical design of equal volume, cast will almost always be lighter. But in reality the design and volume will rarely be the same, because forged piston manufacturers rely on the strength of the forgings and often aim to reduce the volume wherever possible, which is, as you pointed out, doable to a greater extent on a forged piston. But even with the possibility to remove more material from a forged piston, as a general rule of thumb, cast pistons are still often lighter. And while it's easier to reach high rpm with a lighter piston, the weight benefit becomes irrelevant in high revving racing applications (prolonged 10k rpm+) , where the forces experienced by the pistons make cast pistons a poor choice, despite the weight benefit.
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
Hey there. You should see some of the questions I asked on the forums when I first started out. As you learn it gets easier. But there's no reason to be afraid of messing up, at the end of the day, it's just a car and it's just wires . It's all fixable or replaceable. If you're not having fun put it all up for sale. My personal opinion based on my own experience is that I would save up for Nodiz or Megajolt or whatever and buy that. Nodiz worked great for me, the only thing I can complain is that the Bluetooth isn't ideal and takes a few tries when you want to change your maps, but other than that it's really nice and helps make the car a lot more responsive and aggressive once you get the tune right. The difference between 32 degrees advanced and 38 degrees advanced at wot can be very noticeable. But if you're on a budget, some people had good experiences with the 4K dizzy. In fact I used to make an adapter for the 4k dizzy on my CNC but I don't do that anymore. I have sold that design to a guy on Instagram called @datguylance You can get in touch with him, as he might start making them and selling them soon. The adapter makes the install a lot easier. When it comes to MSD I have zero personal experience. But brand new MSD units cost more than the Nodiz? You can find used ones, but the problem is you really can't test if they're working or not until you actually install them on your car? On the other hand you can easily inspect a used 4k dizzy for example, new ones are still available too. So it's up to you. You likely won't save much by the time you buy the 4k dizzy and figure out something for the adapter. There you go, an essay for an essay, hope it was at least a bit useful.
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
ย @Simon-xi8tbย It really depends on what you're after. Some people just enjoy the building aspect and once they're done they want to build again. Which is totally ok of course. For me, I was building this car to drive it. Builds can look great on paper, with swaps, bolt ons, suspension, etc. But in reality a build is truly completed only when it's driven, and driven a lot. This is the stage when you tweak it, tune it and adapt it to your preference. Lots of people today think building cars is like Legos. You put a bunch good looking parts together, shoot some instagram pics, do a burnout and call it "finished". That's just finished in youtube terms. Cars and mechanics are a much more interesting, deep and exhilarating world that's incredibly complex but also incredibly fun and it goes well beyond a list of parts and paint finishes. This is just my opinion of course :)
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
The number doesn't denote engine capacity, as I explained in the video. It would be very illogical for 7 to mean 1.8l and 4 to mean 1.6 liter. You have 1A, 2A, 3A, etc all the way until 8A in the A engine family. The number in front of the "A" denotes the revision of the block, i.e. a significant change to the block design, bore, stroke, etc. All 4A block are very similar, with only minor differences. Cylinder heads between the 4AFE, 4AGE, 4AC are interchangeable. The 4AC and 4AGE block, doesn't matter if it's 4AGE smallport or bigport are almost identical. The internals (crank, rods, pistons) do vary of course, and as you would expect, are stronger on the more performance oriented engines.
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
Most of the parts you can see mentioned in the video with links in the description. I also decided to do a little engine walkaround video to present all the details on this engine, since I got a lot of the questions.
Here's a list of parts for you:
-NODIZ pro ignition ECU and pre-made wiring harness. Provides fully mappable 3d ignition and makes sure you get the most out of the setup
- AEM x-series wideband gauge. You need this to tune the carbs later
-DanST engineering carb conversion kit which includes: (CRB600 FX/FY carbs, intake manifold, gasket, and back plate for the pipercross air filter, fluoro lines silicon hoses and clamps)
- bike carb fuel pump from DanST engineering. Alternatively you can get a fuel pressure regulator, but this is easier honestly, and cheaper.
- DanST engineering velocity stacks which I powder coated sky blue
- vacuum balancing bar from DanST engineering
- Pipercross air filter for the carbs
- Techno toy tuning lightweight alternator pulley (not needed for carb conversion, I got it cause it's nice)
- Techno toy tuning lightwieght water pump pulley (not needed for carb conversion, I got it cause it's nice)
- Techno toy tuning lightweight crankshaft pulley
- Techno toy tuning 36-1 trigger wheel for the crank position sensor
- Techno toy tuning cam gears (not needed, but highly recommended when you start modifying an engine in any way)
- MRP n2 cambelt stabiliser (not needed for carb conversion I got it cause it's nice)
- Ford ignition coil (as found on late 90s fiesta, mondeo, focus, escort)
- Ford crankshaft position sensor (as found on late 90s fiesta, mondeo, focus, escort)
- I also got a six sigma jet kit for these carbs (a full video on jetting is coming soon)
I think that's pretty much it. You can unboxing videos on my channel with more detailed info for all of these parts.
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
I'm glad you liked the video. The fifth gear pop out is incredibly common and if you want just a quick (temporary) fix you can actually replace it yourself with the transmission in the car. Read this: http://www.mr2.net/trackdayqueen/fithgear.htm
But if you want it done properly its best to rebuild everything else too. Often the pop out is caused by a bunch of different reasons, etc. My transmission had quite a few things bad so I replaced everything I could. Depending on your budget, time constraints, what you actually want to do with the car, etc. your options are either a quick cheap fix (as in the link) or doing it all. Since you already god the hub, sleeve, fork, bearings, needles, etc. get the rest of the bearings, synchronous etc. and replace it all maybe since the amount of labour will be relatively similar anyway. Ask your mechanic how much will he charge for the whole job and see if it makes sense to you. Good luck and hope it goes well!
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
ย @jasonputtock4428ย Hey man, thanks a lot for all your effort and input. I do know these carbs inside and out now and the float valve is the first thing I suspected when I was running too rich, and I replaced them right away. There's even a video on the replacement here: https://youtu.be/9xUFz8W5xC0
However, absolutely nothing changed when I replaced the float bowls and I was still running rich. But I just remembered something, I balanced the carbs way back when my engine was firing only on cylinders 1 and 4 and I didn't know it. I checked the balance briefly yesterday as I didn't have time anymore, and it seems that it's way off, especially between cylinders 1 and 2. Carb 1 is the reference carb and all others are balanced to it. This does worry me, because even if my balance is off, then once I balance it all carbs might start running as rich as carb 1, which I can't balance.
I suspected that my pilot screw o rings have failed, but I don't think that would cause a rich condition after researching it, it would just cause a fuel leak from the pilot screw area? Or should I replace the o rings still and see what happens? They would explain the issue to an extent as 1.5 turns out on the pilot screw is way to little and would cause 2, 3 and 4 to be lean.
When it comes to altitude I am at 500m above sea level (1600ft) so I don't think that should be causing too much of an issue.
The factory compression is 9.3:1, but I bumped that up to 10.3 by using domed pistons from the next generation of 4age engines.
I'm thinking right now to first rebalance the carbs and get a new set of spark plugs and see what happens, and then after that to try with new pilot screw o rings and then test again. If none of those two do anything I will have to think of something else. I have tested compression on all cylinders and it is spot on.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
+Javier Broger I hesitate to use the redtop bluetop terminology, this is an old engine and valve covers have been exchanged and there have been engines with bluetop covers and redtop internals and vice versa. So first of all, if you haven't already, take your engine apart and measure everything before you order.
Now, if you have done that, in terms of those pistons, you can put whatever you want in your engine. The stock compression ratio of the 4age is 9.4:1 i believe. What you have to do is determine what will the end compression ratio be, taking into account your head gasket thickness, bore, how much the head and the block will be decked, etc. etc.
The 9.4:1 cr is by today's standards very low, but it was done then taking into account the fuel quality and other factors that were present 20-30 years ago.
Here's an article that is a very good start for you. http://www.driving4answers.com/compression-ratio-calculate/ It explains everything about compression ratio, provides a compression ratio calculator and an example calculation. You will need to get some data on those wiseco pistons to get an accurate calculation.
I will be aiming for a final compression ratio of 10.5:1, which I will achieve by putting in smallport pistons, decking the head and block a bit and using a OEM head gasket. I assume you will end up with a higher compression ratio with those pistons, which means a higher risk of ping (pre-detonation). Higher compression ratio goes hand in hand with higher lift of the camshafts, so if you don't intend to change the cams, like me, i wouldn't go for those wiseco pistons, because that might result in a too high final cr, Those pistons would go great with some 8.1mm lift 264 duration tomei cams I believe.
1
-
1
-
1
-
1
-
1
-
1
-
Thank you for your comment. I have addressed almost everything you talk about in other comments. Please read the rest of the comments section. What you are speaking about is something that might be valid for a very different application.ย
Why do you discredit knowledge from forums? Yes, there is nonsense on forums, but there are also people on the forums who built dozens of these engines (4age 16v bigport)., some of who do it for a living, and have a great reputation for their work. Forums are a great place for people to share knowledge and ideas. Just because the knowledge isn't shared in a regulated environment, let's say an university, doesn't make it less valid. Forums are like any other source of information, and are to be taken with a pinch of salt and require more research. Same goes for knowledge gained at universities from professors. I have seen, read about, and heard reputable professors say things that can be proven wrong easily. Information and knowledge is constantly evolving.ย
Balancing the pistons together with the rings, clips and pins all at once is more practical? Are you sure about that? So I can move the pins from one piston to another? As far as I know each pin and piston are a set and shouldn't be switched around. If you're concerned about uneven wear, switching the pins around is probably a good way to achieve it. Moving the clips and rings has no effect at all. I weighed all my clips and rings. They weigh absolutely the same, down to .00 grams.ย
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
I know you pointed this out before and although you assume "I can't figure it out" I'm saying 60 degrees of power stroke overlap on purpose. And although you used caps and many exclamation marks and say it's "utterly" incorrect it's actually not incorrect. Hear me out, read carefully: A power stroke is 180 degrees, the fact that the exhaust valve opens bbtdc 30, or 40, or 50 or whatever degrees doesn't mean the power stroke is over. Even though the opening of the exhaust valve does change the dynamics of "power" in the power stroke it doesn't mean the power stroke abruptly stops and all the power and combustion pressure instantly escapes through the exhaust valve. If this were the case 1, 2 or 3 cylinder engines with a gap in power strokes wouldn't be able to run without a flywheel and would have abysmal thermal efficiency. The combustion event exposes the piston to a great deal of force which means there's a great amount of inertial force still driving the piston downward even when the exhaust valve opens. Also the exhaust valve STARTS to open at 30 or 40 or 50 bbtdc, but it doesn't instantly fully open within just a few degrees of rotation. Another crucial factor here is variable valve timing in modern engines and the fact that at low rpms some modern engines open the exhaust as late as 10 bbtdc. All that being said I do get your point and books are full of it. But it is a bit outdated and less applicable to more modern, more efficient engines with less friction and vvti. But again your point has merit and is important. The real reason I don't talk about it is that the goal of my videos is to be easy to understand. Adding this point would mean another 5-7 minute of video length and the introduction of a potentially confusing variable that has little educational value in relation to engine balance and is in itself a bit relative and less applicable to modern engines. For example, reading your comment might make someone think that the exhaust valve instantly fully opens before power stroke btdc and that all power instantly escapes through the exhaust port, and that would be, as you like to say, utterly incorrect. So to sum it up, I get it, I also hope you get my side of the story a bit better now.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
You can guarantee it's already being produced? How exactly can you guarantee that? You can buy a Yaris GR, but you can't buy a Gemera. You can maybe make a down payment, have a nice chat over some coffee with Christian, but there's no exact delivery date, no verified info on production. When you pay for the Yaris the dealership will deliver your car on an agreed upon date, like any other car. On top of this the Gemera is irrelevant. It's a no budget design, that nobody will do big miles with and will spend its life in a universe of extremes that aren't applicable to 99% of humanity. When your car costs as much as the Gemera you can make it have any power output, 700, 800, whatever. Just raise the price get even more expensive components and materials to hold the power. Mass production on a large scale with limited budgets whose end products have to cater to all kinds of users is the true challenge of engineering. Hypercars are display toys and pampered garage queens, they don't excite me. Youtube's already full of videos of people driving, drifting and having fun with the Yaris GR. Even when the Gemera gets delivered the only videos you'll see is supercar Blondie walking around it and pointing at it.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
Wow... You're still here replying to most of the comments in this video. Life? No?
Anyways, the reason you can't feel power is because power is a mathematical formula or something physics calls a scalar quantity and you never feel power you feel it's consequences. You feel acceleration which is a consequence of power, torque, vehicle mass, traction, etc. Another guy tried to prove that power can be felt but all his examples were consequences of power like friction etc. Acceleration is a vector, it has both magnitude and direction which is why you can feel it. Torque is a pseudo-vector but can also be felt. Power is simply the work done over time, there's no direction nor magnitude in the traditional sense. A horse pulling x weight over x time equals x power... Nothing to be felt. You can feel the horse trampling you if you stand in front of it, but obviously that's not power, it's the weight of the horse. You can feel movement if you ride the horse but that's the acceleration of the horse, not power.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
Can I ask you something and you try to give me the most honest genuine answer you possibly can? During my 6+ years on YouTube I've read countless comments, and I've always been curious about a certain type of comment/ person I get from time to time. You fit that profile and comment pattern nicely. The comment starts with a condescending tone, downplaying what I said in the video for one reason or another. When I respond the commenter always cites their extensive experience as a mechanic, engineer or similar and proceeds to continue downplaying my perceived lack of experience or knowledge, despite not knowing me. And no matter what I say the commenter will continue in the same direction trying to prove their point, a point which is always either relative or subject to debate or sometimes even just silly. So my question is: what are you actually trying to achieve, what are you trying prove? That you're smart and I'm stupid? Are you annoyed by me, my face, my content? Why the condescending tone? Why do you have the need to try and get me to think like you? Are you trying to prove your value in a public space? Why do you make assumptions about me when I don't make any about you? Because it's obvious this isn't only about distributors or anything else. You couldn't possibly care enough about distributors to continue a pointless argument this much. If it was about distributors we would easily agree to disagree and drop this. You prefer distributors and carbs I like the advantages of modern stuff and that's it, to each their own. You like apples, I like oranges and we say bye. And I've scrolled through the comments sections of other technical information channels and they get the same type of commenter too, and the commenters always cite their extensive experience, be it 8 or 20 years doing this or that and they often downplay youtube. Look man, congrats on being an automotive technician for 8 years, I admire and respect all fields of work. I have never in my entire life downplayed anyone's work, be it a grave digger or a triple PhD professor, our deeds give us merit not our titles. So why do you downplay my work? "just a youtube car enthusiast"? I challenge you to try and do what I do. Make an informative video that gets 10.000 views. Make a channel that has 1000 subscribers. Give it a go. And I just can't wrap my head around how someone can so adamantly defend something and believe they're actually smarter than the evolutionary path of the entire auto industry and claim that car makers don't care about the lifespan of parts. There's warranties that last, 2, 5, 7 years, so I doubt they would stuff junk into their cars. They have images to uphold and sales to continue making. You cite Nascar and SCCA, that's racing man. Rules and regulations in racing classes demand a certain type of fuel delivery and/or ignition. Outside of those classes in the USA, only historic racing classes demand a distributor. It isn't really seen anywhere else anymore outside the MSD promag in top fuel, but that's also an extremely specific application. Obd dongle and Hondata? I have personally reflashled about a dozen stock OEM ECUs with a cable and a laptop. Yes the flashing kit costs a bit of money, but comparing the flexibility of tune of a carburetor and distributor to a cop and injection is ludacris. You have to remove carbs, rejet them, do trial and error and it's an absolute impractical pain and compromise compared to injection, and the maximum power potential isn't even comparable. The only thing you can do for free on a distributor is move it left and right, and there's zero flexibility there, you advance the entire rpm range. With a cop you can program every individual intersection of rpm and load differently, you can even do it differently for different cylinders, and do it reliably and with perfect repeatability. And to top it all off you claim that tuners, enthusiasts and journalists "rarely know very much at all". Where does that audacity come from man? Did the 8 years of automotive technicianship somehow make your arguments more credible than that of the general population of tuners, enthusiasts and journalists? Did changing oil filters and clutches give you the right to downplay several different career paths? So I ask you, as a human to a human, what are you trying to prove? Because nobody can objectively prove that distributors are generally better than wasted spark or CoP. What is that you want to achieve? Do you need someone to pat your head and tell you that you're doing a good job? Ok, you're doing a good job, you're working, you have merit, I genuinely and honestly applaud your efforts. Do you want me to say that I'm wrong and you're right? I won't believe it, but I'll say it "Im wrong and you're right". Is that it? If it's not, please tell me what is the point of thid type of opinionated comments about relative things and the downplaying of other people? I really honestly want to know.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
I agree that the tanabe is definitely prettier looking being an OLED display. But I did quite a bit of research before deciding which gauge to go for and while AEM's may not be as pretty it is simply superior in terms of other, for me, more relevant stuff. The tanabe doesn't allow for data logging at the moment, and that's really important for many people, and will be important for me in the future. The AEM is also considerably cheaper. When it comes to responsiveness, I haven't measured myself, but I don't think that any gauge, save for the really high end ones, responds faster than the x-series. So yes, not as pretty as tanabe, but for me the gauge might as well be poop colored as long as it does what I want it :)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
โย @MSMartanCZย Don,'t worry there's no need to apologize. These videos really are about presenting facts, and not really my opinion. But the displacement thing is very interesting, any way you look at it. The 2.6 liter classification is done by many racing leagues and classes as well. It's very common, because placing wankel engines in racing categories with sub 1.6 piston engines would put piston engines at a disadvantage. Piston engines make 99% of engines out there, so everything naturally has to be compared to them. When it comes to two strokes, it's important to remember that two strokes often squeeze out more power and performance from small displacement, just like wankels, but just like the wankel they also have a price to pay for that. It's also really interesting how from a different perspective it might have been even more impressive for Mazda to represent the engines as 2.6 liters. Although it would likely be a bad decision for marketing, from an engineering perspective it's incredibly impressive how Mazda managed to get 2.6 liters of working active displacement from an engine that's physically tiny and weighs 75kg without accessories. When you look at it that way, 2.6 liters becomes praise, instead of downplaying.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
I get you're point, I really do. I also appreciate the drawing and you trying to defend your argument in a civilized manner. You're obviously an intelligent person and not some sort of troll trying to annoy me, which is why I'm continuing this debate and not ignoring you. As I said, I get your point but I think you missed the point of the video. The point of the video was to explain and demonstrate the dynamics of snap oversteer aka lift off oversteer i. e. What it takes for snap oversteer to happen and how to get out of it and regain control. I wanted to show what to do and what not to do when you do release throttle suddenly and potentially loose control of the car. In every of the scenarios when I regained control of the car I could have applied the throttle again and continued driving in any desired direction, but there was simply no more road left. This is the best place I could find to do this without someone calling the police. The point was how to regain control, which is why it doesn't matter what kind of corner shape I make with cones, once you regain control you can go anywhere. I just went into a random direction where there was most of the road left and I sort off tried to stay within the camera's angle. I wasn't understeering at all, you can clearly see that. I promise you that if you try this yourself properly you will understand and feel it right away. It's all about regaining control, and once you know how to do that, the shape of the road is irrelevant, the simple techniques work in every type of corner. Most oversteer crashes in a mid engined car happen because people are unfamiliar with the phenomenon of lift off oversteer and panic when it happens, my principal goal was to try and avert that. I hope we're on the same page now and can put this to rest :)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
There's some amazing roads in the country, but you need someone to show them to you. I have driven over probably every inch of asphalt here and there's a few roads that will really blow your mind. I'm a huge fan of the 240z, but unfortunately have never seen one live or driven it. My car should be ready next summer too, so if you decide to swing by with the z I would love to show you some of the roads. We could take the cars to the mountains here (there's some really nice curves on Bjelaลกnica mountain), maybe even up to Istria, or down to the Dalmatian cost, or even Slovenia, and shoot a few cool videos. I would love driving alongside a Z. You are sadly right when it comes to the car preference in this part of the world and much of Europe. The modding, tuning, restoring, or whatever other car scene is honestly pretty weak, especially when it comes to old Japanese cars. There are people who love them, but many give up because of the financial cost of importing parts from the U.S. or UK or wherever else, because finding anything here is painful and the customs duties are huge.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
Thanks, glad you like it. There are no guys, just 1 guy, me. Research, fact checking, talking, animations, audio, video, editing, all done by me. Ka24det hasn't been covered yet, but definitely will be in the near future.
1
-
1
-
1
-
1
-
1
-
1
-
ย @bliglumย Hmmm, the Corvette. That's got to be one of the most exciting and admirable things that's happened during the decade no doubt. The Mustang and the Corvette are mostly US market targeted, and the US market is still alive and probably the best place to sell a sports car. The Supra has to try and sell well in Japan and Europe too, and that's a different ball game. I'm in Europe where norms, regulations and taxes are getting crazier every year, some of it is totally absurd but it's very successful at discouraging people from buying sports cars. The ND is amazing too, nothing but praise for it. I'm really not trying to defend Toyota, they're neither the best nor the worst out there and it isn't money in our out of my pocket. The deal is that developing an engine for a car like the Supra is terribly expensive and complex, the ND doesn't really compare in that segment and both the Vette and Mustang are working with existing engines. Something like the 2jz would never make it into production today, and Toyota probably realized that developing a brand new performance engine that meets all norms would be stupidly expensive, and they also probably realized that it wouldn't be much better than what BMW already has, so they decided to cut costs. They could have also said let's just not make this at all because the Hybrids are what's making us money. Same with the gt86, they joined with Subaru to cut costs. And it's a great entry level sports car. I would have preferred a Supra with a Toyota engine too, I really don't think the BMW power plant is bad at all, but it would be more fun to see what Toyota would come up with. But the car is at is, I think it's pretty, it's good that it's out there, and rather than all the hate, I think it's easier to just appreciate it for what it is than what it isn't?
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
Here's an unboxing video of the carb kit where you can see everything that comes with it https://www.youtube.com/watch?v=HTZ9xo1LVEA&t=3s. In this video there's a link in the description where you can see how much it costs. Now when it comes to hp gains, the carb conversion gets you about 10-15 hp, maybe 20 if you have some other mods like cams, higher compression etc. But more importantly it gives you better throttle response, an awesome soundtrack and makes the engine generally more fun to drive. When it comes to efficiency, you engine will be less efficient with carbs, i.e. the mpg will be worse, because when it comes to fuel saving carbs are an old obsolete technology compared to fuel injection. But the bike carbs are from modern bikes so the mpg will not be that horrible, maybe 1-3 liters of gas per 100 km more than stock. ITBs essentially means individual throttle bodies, and that just means one throttle body for each cylinder, it doesn't tell you anything about the fuel delivery. Bike carbs are essentially itbs, 4 cylinders, 4 throttle bodies, but the fuel delivery is through the venturi effect of the carbs. Now you can also have itbs and fuel injection. Fuel injection is superior in terms of power because it is more accurate and can be tuned more precisely than carbs, but it will also be significantly more expensive to have itbs with fuel injection. The mpg will also always be better with fuel injection. But when it comes to the sound and the sheer charm of it, nothing beats carbs in my personal opinion. When it comes to reliability there really isn't much difference when you take everything into account. Carbs require periodic maintenance, but fuel injection also requires a lot of sensors and complicated electronics, so while the injectors themselves will rarely fail or need to be cleaned (especially old school injectors from the 80s and 90s), the other components like temperature sensors, air flow meters or map sensors and other stuff will fail a lot more often. So essentially it's pretty much the same. Nice thing is when you figure the carbs out maintaining them really isn't' that complicated or scary. Hope I managed to answer everything :)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
The deal really is that you can't find a naturally aspirated diesel with an "equivalent" petrol. Naturally aspirated diesels in cars don't really exist anymore, and back when they did (VW SDI is the last I remember) they had only one goal: economy, both in terms of manufacturing costs and running costs. On top of this, they were usually of a relatively large displacement as low displacement NA diesels simply don't make sense. Comparing them to a petrol engine of the same displacement isn't really a fair or equal comparison, as higher displacement petrols usually are pretty serious upmarket engines. However, when it comes to turbocharging diesels always make more torque. I had someone in the comments say "most of the torque in diesels comes from turbos" and although you might think it's true, it really isn't. If all the torque came from the turbo than petrol engines wouldn't be outtorqued by the diesel. The torque comes from the diesel being able to make better use of the turbo. It's compression, heterogeneous mixture and long stroke squeeze a lot more potential out of the turbocharger, so it's not the turbo, it's what the diesel does with the turbo that results in more torque and efficiency. So basically NA diesels are a bit irrelevant and difficult, if not impossible to compare as they don't really have true petrol equivalents.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
It was surprisingly easy to catch it in the tunnel , there was really no "snap" in it, pretty predictable. It just surprised me a bit as I forgot I had no alignment for a moment. When it comes to the sensor location, I always read instructions don't worry, I know this isn't perfect but it still gives a reading that is a reference point to see in which direction I'm going until I have a new header made. Some people install 4 of these sensors, one runner each and monitor each cylinder separately, so it's not a useless location. Spark test also familiar with, but as I said in the video I only tested cylinder 1 and assumed all others were firing, which was stupid of me. Technical inspection is all about the brakes, but definitely far less strict when compared to USA, UK, Germany, etc. They did turn a bit of a blind eye seeing as it's a restoration project and I did have to promise to fix up a bunch of things asap :)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
You're not interpreting the information correctly. Yes, if you add everything up they can reach into the millions for the top teams. Incredible as it may sound, a few million is not much by today's standards. But in terms of both cost and technology top fuel cannot compare with F1. If an individual has a few millions to spare they can enter top fuel with little to no sponsorships and they can own and race a top fuel dragster. If you don't want to race you can put one together to keep in your living room and it will be pretty much just like the one the top teams are using. This is unimaginable for F1. Half of the stuff is top secret, one-off, the best possible current technology can deliver. F1 is often changing, different engine configurations, different drive trains, hybrids, different aerodynamics, different types of forced induction. You can approach an F1 team and say "I have an infinite amount of money, please sell me your car or its engine" and the team will say "No". You cannot buy pretty much anything currently used. The development of a single new part sometimes costs more than multiple top fuel dragsters. Pretty much zero actually used parts specs are known. How do the pistons look? What kind of valves? Rods? Cranks? Blocks? Turbos? We know something and can guess some of it but the actual details? Very little if anything, because it's the latest and greatest and if it leaks it gets copied by others if it offers any kind of advantage. Technology from F1 trickles down into the automotive industry, often decades later. Pretty much everything is known on a top fuel dragster. From the rods, the pistons, the magnetos, the valves, the fuel delivery, whatever. There's a camera over them when they're assembling the engine because everything is known. Get a camera shooting for current F1 engine assembly and the only thing shot will be the camera. NHRA has kept the rules pretty much the same for ages. It is simply the perfected form of ancient combustion technology that has over the deacdes specialized itself to make use of the energy available in Nitro. It makes it no less impressive and awe-inspiring in my book but F1 and Top Fuel are apples and oranges. I know it's tempting to try and look smart by calling something on a YouTube video "100% incorrect", but It's always best to resist temptation if you're not 100% sure what you're talking about.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
I did. Here's what I know.
Yes, sand casting is basically pouring molten metal into a mold. But the finished block has coolant passages and voids that must remain free of metal. So you fill those with something, I believe a sand or some sort of sand resin mix, I'm not sure on that one. You fill the coolant passage structure through the core plugs. Once the molten metal cools the filling holes allow you to also get the sand out from the coolant passages.
However, I know of cast iron blocks that aren't made this way. They are made in a way similar to aluminum blocks, which is investment casting. Instead of sand you have styrofam which is consumed or bruned away by the molten metal so there's no need for any core support with sand and also there's no sand to be removed afterwards. But cast iron blocks made with investment casting still have core plugs and aluminum ones don't. This lead me to believe that the only reason aluminum ones don't have the plugs is because aluminum and steel expand at different rates and the plugs would just fall out or leak in an aluminum block. But they were kept in the iron blocks because they can protect in the case of freezing?
I also watched, sometimes helped, remove about a dozen engines from cars from 2010 to about 2018. None of the alu blocks had core plugs. But all the cast iron blocks have the plugs. Albeit the modern ones have like just 1 or 2 much smaller plugs, not like most old engines that have 4 or 5 big ones. So, they're still there even though the production process no longer requires them. Hence, my response.
I have personally never seen a plug popped out by the expansion of frozen liquid but I know tractor owners swear how they save engines. Farmers in my and neighboring countries are usually stingy so they just run tap water in their engines and they then empty the water before winter comes and they store the tractor. Sometimes they forget. They claim they find the plugs popped out in spring and the block un-cracked.
I personally think the freeze plugs are not the best protection against block cracking but practice seems to show they can definitely play that role. It is weird that they're on modern engines because manufacturers really don't have any obligation to provide block protection against improper use, but they're there. So......I don't know. Werid topic. Maybe the manufacturing is more important and my respons wasn't entirely correct? Maybe there's a video in this....
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1