Youtube comments of Kim Davis (@kimdavis5631).

  1. 557
  2. 208
  3. 135
  4. 97
  5. 84
  6. 61
  7. 53
  8. 53
  9. 45
  10. 45
  11. 42
  12. 35
  13. 33
  14. 33
  15. 27
  16. 26
  17. 25
  18. 24
  19. 23
  20. 22
  21. 22
  22. 21
  23. 20
  24. 17
  25. 17
  26. 17
  27. 16
  28. 16
  29. 16
  30. 16
  31. 15
  32. 15
  33. 15
  34. 15
  35. 14
  36. 14
  37. 14
  38. 14
  39. 12
  40. 12
  41. 12
  42. 12
  43. 12
  44. 11
  45. 11
  46. 11
  47. 11
  48. 11
  49. 10
  50. 9
  51. 9
  52. 9
  53. 8
  54. 8
  55. 8
  56. 8
  57. 8
  58. 8
  59. 8
  60. 8
  61. 8
  62. 8
  63. 7
  64. 7
  65. 7
  66. 7
  67. 7
  68. 7
  69. 7
  70. 6
  71. 6
  72. 6
  73. 6
  74. 6
  75. 6
  76. 6
  77. 6
  78. 6
  79. 6
  80. 6
  81. 6
  82. 5
  83. 5
  84. 5
  85. 5
  86. 5
  87. 5
  88. 5
  89. 5
  90. 5
  91. 5
  92. 5
  93. 5
  94. 5
  95. 5
  96. 5
  97. 5
  98. 4
  99. 4
  100. 4
  101. 4
  102. 4
  103. 4
  104. 4
  105. 4
  106. 4
  107. 4
  108. 4
  109. 4
  110. 4
  111. 4
  112. 4
  113. 4
  114. 4
  115. 4
  116. 4
  117. 4
  118. 4
  119. 4
  120. 4
  121. 4
  122. 3
  123. 3
  124. 3
  125. 3
  126. 3
  127. 3
  128. 3
  129. 3
  130. 3
  131. 3
  132. 3
  133. 3
  134. 3
  135. 3
  136. 3
  137. 3
  138. 3
  139. 3
  140. 3
  141. 3
  142. 3
  143. 3
  144. 3
  145. 3
  146. 3
  147. 3
  148. 3
  149. 3
  150. 3
  151. 3
  152. 3
  153. 3
  154. 3
  155. 3
  156. 3
  157. 3
  158. 3
  159. 3
  160. 3
  161. 3
  162. 3
  163. 3
  164. 3
  165. 3
  166. 3
  167. 3
  168. 3
  169. 3
  170. 3
  171. 3
  172. 3
  173. 3
  174. 3
  175. 3
  176. 3
  177. 3
  178. 3
  179. 3
  180. 3
  181. 3
  182. 3
  183. 3
  184. 3
  185. 3
  186. 3
  187. 3
  188. 3
  189. 3
  190. 3
  191. 3
  192. 3
  193. 3
  194. 3
  195. 3
  196. 3
  197. 3
  198. 3
  199. 2
  200. 2
  201. 2
  202. 2
  203. 2
  204. 2
  205. 2
  206. 2
  207. 2
  208. 2
  209. 2
  210. 2
  211. 2
  212. 2
  213. 2
  214. 2
  215. 2
  216. 2
  217. 2
  218. 2
  219. 2
  220. 2
  221. 2
  222. 2
  223. 2
  224. 2
  225. 2
  226. 2
  227. 2
  228. 2
  229. 2
  230. 2
  231. 2
  232. 2
  233. 2
  234. 2
  235. 2
  236. 2
  237. 2
  238. 2
  239. 2
  240. 2
  241. 2
  242. 2
  243. 2
  244. 2
  245. 2
  246. 2
  247. 2
  248. 2
  249. 2
  250. 2
  251. 2
  252. 2
  253. 2
  254. 2
  255. 2
  256. 2
  257. 2
  258. 2
  259. 2
  260. 2
  261. 2
  262. 2
  263. 2
  264. 2
  265. 2
  266. 2
  267. 2
  268. 2
  269. 2
  270.  @Serpentservant91  IMAO Fecal-aerosol transmission, according to a research paper published in Annals of Internal Medicine in December 2020, was suspected to be the cause of a Covid-19 outbreak in a high-rise apartment building in Guangzhou, China that infected at least nine people across three separate households. Prior to the outbreak, one of the families had traveled to Wuhan, the original epicenter of the pandemic. The other two had not, nor did they have any close contact with the first family in the weeks leading up to symptom onset. In addition to swabbing the infected residents, researchers who investigated the case collected environmental and air samples from their private residences and common areas, including elevators and ventilation outlets on the roof. Almost all of the environmental samples that came back positive were from the master bathrooms, giving the researchers reason to believe that the drainage pipes connecting the three units were to blame. If fecal-aerosol transmission was the source of the Guangzhou outbreak, it wouldn’t be without precedent. In 2003, a much larger outbreak of SARS, the first human coronavirus pandemic, infected more than 300 people living in Amoy Gardens, a large apartment complex of about 15,000 residents in Hong Kong. The team of experts dispatched to contain the spread, which happened virtually overnight and ultimately killed 42 people, traced it back to two causal factors. The first was the index patient, or “patient zero,” a 33-year-old man who actually lived in Shenzhen but frequented his brother’s Amoy Gardens apartment and, once he got sick with SARS, had explosive diarrhea. The second was the complex’s defective drainage system, which dried up the toilets of many residents—most of them in Block E, the building that ultimately had the most deaths—forcing them to resort to bucket flushing. Exhaust fans installed in the bathrooms for ventilation purposes may have unwittingly contributed to the spread of viral particles as well.
    2
  271. 2
  272. 2
  273. 2
  274. 2
  275. 2
  276. 2
  277. 2
  278. 2
  279. 2
  280. 2
  281. 2
  282. 2
  283. 2
  284. 2
  285. 2
  286. 2
  287. 2
  288. 2
  289. 2
  290. 2
  291. 2
  292. 2
  293. 2
  294. 2
  295. 2
  296. 2
  297. 2
  298. 2
  299. 2
  300. 2
  301. 2
  302. 2
  303. 2
  304. 2
  305. 2
  306. 2
  307. 2
  308. 2
  309. 2
  310. 2
  311. 2
  312. 2
  313. 2
  314. 2
  315. 2
  316. 2
  317. 2
  318. 2
  319. 2
  320. 2
  321. 2
  322. 2
  323. 2
  324. 2
  325. 2
  326. 2
  327. 2
  328. 2
  329. 2
  330. 2
  331. 2
  332. 2
  333. 2
  334. 2
  335. 2
  336. 2
  337. 2
  338. 2
  339. 2
  340. 2
  341. 2
  342. 2
  343. 2
  344. 2
  345. 2
  346. 2
  347. 2
  348. 2
  349. 2
  350. 2
  351. 2
  352. 2
  353. 2
  354. 2
  355. 2
  356. 2
  357. 2
  358. 2
  359. 2
  360. 2
  361. 2
  362. 2
  363. 2
  364. 2
  365. 2
  366. 2
  367. 2
  368. 2
  369. 2
  370. 2
  371. 2
  372. 2
  373. 2
  374. 2
  375. 2
  376. 2
  377. 2
  378. 2
  379. 2
  380. 2
  381. 2
  382. 2
  383. 2
  384. 2
  385. 2
  386. 2
  387. 2
  388. 2
  389. 2
  390. 2
  391. 2
  392. 2
  393. 2
  394. 2
  395. 2
  396. 2
  397. 2
  398. 2
  399. 2
  400. 2
  401. 2
  402. 2
  403. 2
  404. 2
  405. 2
  406. 2
  407. 2
  408. 2
  409. 2
  410. 2
  411. 2
  412. 2
  413. 2
  414. 2
  415. 2
  416. 2
  417. 2
  418. 2
  419. 2
  420. 2
  421. 2
  422. 2
  423. 2
  424. 1
  425. 1
  426. 1
  427. 1
  428. 1
  429. 1
  430. 1
  431. 1
  432. 1
  433. 1
  434. 1
  435. 1
  436. 1
  437. 1
  438. 1
  439. 1
  440. 1
  441. 1
  442. 1
  443. 1
  444. 1
  445. 1
  446. 1
  447. 1
  448. 1
  449. 1
  450. 1
  451. 1
  452. 1
  453. 1
  454. 1
  455. 1
  456. 1
  457. 1
  458. 1
  459. 1
  460. 1
  461. 1
  462. 1
  463. 1
  464. 1
  465. 1
  466. 1
  467. 1
  468. 1
  469. 1
  470. 1
  471. 1
  472. 1
  473. 1
  474. 1
  475. 1
  476. 1
  477. 1
  478. 1
  479. 1
  480. 1
  481. 1
  482. 1
  483. 1
  484. 1
  485. 1
  486. 1
  487. 1
  488. 1
  489. 1
  490. 1
  491. 1
  492. 1
  493. 1
  494. 1
  495. 1
  496. 1
  497. 1
  498. 1
  499. 1
  500. 1
  501. 1
  502.  @Serpentservant91  Also IMAFO, The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ¹ 2% exhibiting diarrhea and 12 ¹ 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102-105 gc/ml) and feces (ca. 102-107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105-1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector.
    1
  503. 1
  504. 1
  505. 1
  506. 1
  507. 1
  508. 1
  509. 1
  510. 1
  511. 1
  512. 1
  513. 1
  514. 1
  515. 1
  516. 1
  517. 1
  518. 1
  519. 1
  520. 1
  521. 1
  522. 1
  523. 1
  524. 1
  525. 1
  526. 1
  527. 1
  528. 1
  529. 1
  530. 1
  531. 1
  532. 1
  533. 1
  534. 1
  535. 1
  536. 1
  537.  @FreeMan..-._.-._._.  In the preclinical study, BNT162b2 demonstrated protective anti-viral effects in rhesus macaques, with concomitant high neutralizing antibody titers and a TH1-biased cellular response in rhesus macaques and mice. In a viral infection model, macaques that received two injections with 100 ¾g BNT162b2 and macaques that received saline control injections were challenged 55 days after the second immunization with a very high viral inoculum of approximately 1 million plaque forming units of SARS-CoV-2, via both intranasal (nose) and intratracheal (lung) routes. Immunization with BNT162b2 reduced viral infection with no viral RNA detected in the lower respiratory tract of the immunized animals, while in most non-immunized (saline) animals, there was evidence of viral RNA. Importantly, BNT162b2 induced potent SARS-CoV-2 neutralizing antibodies in vaccinated-macaques, and viral antigen-specific CD4+ and CD8+ T cells. Rhesus macaques (2-4-year-old males) were immunized by intramuscular (IM) immunization with 30 ¾g or 100 ¾g of BNT162b2 or saline control on Days 0 and 21 (2 doses). After two immunizations, neutralization titers were detectable in rhesus macaques sera with geometric mean titers of 962 (on Day 35 for the 30 ¾g group) or 1,689 (on Day 28 for the 100 ¾g group). Neutralizing antibody titers persisted to at least day 56, with higher geometric mean titers (GMTs) than those in a panel of human convalescent sera. BNT162b2 vaccination elicited a high frequency of CD4+ T cells that produced IFN-ɣ, IL-2, and TNF-ι, and almost no IL-4 producing CD4+ cells were detectable, indicating a TH1-biased response, which is an immune profile thought to promote vaccine safety. BNT162b2 also elicited spike-specific IFN-ɣ producing CD8+ T cell responses, which is thought to promote an anti-viral effect.
    1
  538. 1
  539. 1
  540. 1
  541. 1
  542. 1
  543. 1
  544. 1
  545. 1
  546. 1
  547. 1
  548. 1
  549. 1
  550. 1
  551. 1
  552. 1
  553. 1
  554. 1
  555. 1
  556. 1
  557. 1
  558. 1
  559. 1
  560. 1
  561. 1
  562. 1
  563. 1
  564. 1
  565. 1
  566. 1
  567. 1
  568. 1
  569. 1
  570. 1
  571. 1
  572. 1
  573. 1
  574. 1
  575. 1
  576. 1
  577. 1
  578. 1
  579. 1
  580. 1
  581. 1
  582. 1
  583. 1
  584. 1
  585. 1
  586. 1
  587. 1
  588. 1
  589. 1
  590. 1
  591. 1
  592. 1
  593. 1
  594. 1
  595. 1
  596. 1
  597. 1
  598. 1
  599. 1
  600. 1
  601. 1
  602. 1
  603. 1
  604. 1
  605. 1
  606. 1
  607. 1
  608. 1
  609. 1
  610. 1
  611. 1
  612. 1
  613. 1
  614. 1
  615. 1
  616. 1
  617. 1
  618. 1
  619. 1
  620. 1
  621. 1
  622. 1
  623. 1
  624. 1
  625. 1
  626. 1
  627. 1
  628. 1
  629. 1
  630. 1
  631. 1
  632. 1
  633. 1
  634. 1
  635. 1
  636. 1
  637. 1
  638. 1
  639. 1
  640. 1
  641. 1
  642. 1
  643. 1
  644. 1
  645. 1
  646. 1
  647. 1
  648. 1
  649. 1
  650. 1
  651. 1
  652. 1
  653. 1
  654. 1
  655. 1
  656. 1
  657. 1
  658. 1
  659. 1
  660. 1
  661. 1
  662. 1
  663. 1
  664. 1
  665. 1
  666. 1
  667. 1
  668. 1
  669. 1
  670. 1
  671. 1
  672. 1
  673. 1
  674. 1
  675. 1
  676. 1
  677. 1
  678. 1
  679. 1
  680. 1
  681. 1
  682. 1
  683. 1
  684. 1
  685. 1
  686. 1
  687. 1
  688. 1
  689. 1
  690. 1
  691. 1
  692. 1
  693. 1
  694. 1
  695. 1
  696. 1
  697. 1
  698. 1
  699. 1
  700. 1