Comments by "D W" (@DW-op7ly) on "America's war machine needs Chinese magnets, so we're going to make our own. But nobody knows how." video.
-
13
-
2
-
2
-
2
-
2
-
@MASMIWA looks like you are 100% right they are refining, but not heavy rare earths yet
👇
SPECIAL REPORT: U.S. Begins Forging Rare Earth Supply Chain
2/10/2023
And soon, MP Materials will no longer have to ship this mixture overseas to China for the lengthy process of separating and refining the rare earth elements. After two years of construction, the company announced in November that it is on the cusp of opening the first rare earth refinement facility within the United States at the Mountain Pass facility.
First it must commission assets for the new facility for the second stage of production, which is a process of stress testing the facility’s equipment to ensure it is performing at the rate it was designed for, Sloustcher said during a tour of the ongoing construction at the Mountain Pass mine. The procedure will unfold over the course of 2023, he added.
“We’re months away from producing refined products,” he said. “It’s really exciting.”
The second stage of production starts with a process of drying, roasting, leaching and purifying the mixture of rare earth concentrate, he explained. Then, the rare earths are fed into one of several towering tanks located in a building longer than an American football field. In these vats, a solvent extraction process separates the mixture into individual rare earth oxides, he said.
Although it’s just one refinement facility competing against multiple in China, its opening marks a crucial step in the United States’ effort to address its vulnerable rare earth supply chain. In 2020, the Department of Defense invested $10 million into the $200 million project, according to a Pentagon press release.
MP Materials will focus on refining a compound of neodymium and praseodymium — one of the most common materials used to make rare earth magnets — as well as lanthanum and cerium, Sloustcher noted. These elements are classified as “light rare earths.”
The government is also pushing for domestic production of “heavy rare earths,” which are more difficult to refine but also used to make more specialized magnets. For example, heavy rare earths terbium and dysprosium are needed to make rare earth permanent magnets that can operate in high temperatures, while samarium is used to produce samarium-cobalt magnets found in aerospace and defense applications.
National Defense Magazine
1
-
1
-
1