General statistics
List of Youtube channels
Youtube commenter search
Distinguished comments
About
B. Xoit
Numberphile
comments
Comments by "B. Xoit" (@b43xoit) on "Numberphile" channel.
Previous
1
Next
...
All
It ought to be possible to program a virtual camera that you could move around to get different projections onto 2d of your 4d object.
2
This vid deserves an extra "thumbs up" for making the proof so clear.
2
I think I have seen seven-bladed fans (on car radiators?) that were not radially symmetrical. Or maybe they were five-bladed.
2
Möbius, not Mobius!
1
Piqued.
1
When I see or think about a cylinder where the ratio of the length to the diameter falls in a certain range, the word "cout" or "koot" comes to mind. I don't know why.
1
The difference is 111000.
1
On the input side, he is running the complete circle.
1
Complex numbers apply to the analysis of circuits with alternating current, also to quantum mechanics.
1
@lorenzomanzoni1478 The epithet "Brilliant!" in actual use, compared to the name of the advertised courses, "Brilliant".
1
@kazedcat Unless it takes the distance metric into account, right?
1
Gives 42069
1
He mispronounces Möbius as mOHbius.
1
Sometimes.
1
Single-digit numbers meet the definition. They read the same way in both directions. This is also true of the zero-digit number.
1
I think so.
1
But you only know that will work because someone already proved the theorem.
1
So for example I'll take 2625223861. I assume the "middle" means all but the starting and ending digits. So if I "reverse the middle", I arrive at 2683225261. If I start with 2625223861 and subtract 2683225261 twice, I get -2741226661, which isn't zero. So, I don't know what you mean.
1
Trivial.
1
Exact placement.
1
A brute force algorithm would find all in theory, although I don't know whether there exist computers that can complete that before the Sun becomes a red giant.
1
T L, I assumed the questioner meant, given a positive integer, is there an algorithm to find all the ways to write that integer as the sum of up to three palindromes.
1
It's said to be slated to come out eventually.
1
So the cendental numbers are only countable.
1
Do you have a proof?
1
$ dc 4 10000^p 398027684033796659235430720619120245370477278049242593871342686565238\ 635974930057042676009749975595510836461137504912702831400376935319143\ 621753470415827025981215282426893498224826615977707595539466961019588\ 699726772279731941315198182787264034852821200164566127930390710398182\ 979935327718016873784821349516406114982916691867361875370024545872140\ 793827277482562824192439237801588697814168520338650090909697535966525\ 032757049430286459482977357373598020450589927318365663076719136934132\ 593126761906696003770385305284570331119691001526584347722012386381881\ 779425549210851696458253943578557699072154639655630793883941961378971\ 846841113804188730258903839103669626086974468150655710480841592465655\ 211805257863007811676888839555017536731758113448656752514158601444051\ 645154665514388431619042396106716755762338728183461369854648923972904\ 427556158821823778729193111453445844216979095435045778144571378954652\ 122396061615147642540250745857228893999875491625014946013839340891326\ 060933901036249999238637827577774666644809734033861619420363936465178\ 730919233673114244563915058438996625834112132967998495576249320462871\ 747777012165543887156255858358784852335060574881876552025685704823768\ 078710818951860741379429242110855644973977420413810373514584504006896\ 392675854997866870818564207239083874324953871276375716101506575153205\ 747363963740749867514682619756775534507006871485887812402927738227576\ 635284174246988540785975240020481266853076127172228024330561550120182\ 008777598230542033702463408316671120886169260934006805799864598636311\ 179787776738608992346063063099659648279663878174074787179237169752957\ 046404584525301384153358344055908219695854852185210739761460551596658\ 211013159915409566145426809737550417578228465835830890294497535463112\ 081537672664056891624345779311524560019984315456142126282898486728345\ 004767873499752683471409587367450593302392307908004590644754012537113\ 320493601682133709318222647489080531644015321391157387178232154126828\ 007760313716872242209614200967522180475716199973689467714010404673961\ 454146466045855232217196687665143147612199151921277432309700460321430\ 381533385245877431330533479476152339364503436322919665631042328740463\ 612565842560411947020174006507893396276103834436233140915025391014386\ 119201176462659556388343058600326710618903683746516577021214276933289\ 179021059956925949717956040857979165914170970056212869933593589268626\ 151996676594370800885093048230687152803213254735594741799076039453057\ 272319884322341883241036382617598401889439130301876975498681736174215\ 711287053447013711596004574803562701388246822510391522419061320663740\ 921321754344166744899588160649291823535983386025904942040724581017615\ 968429577015808090360968544059204594200069304612417366398776831532265\ 596224715750301792207725607932534543693758772262010387360435567635232\ 718343420679693057360004073679493008945813961012439574397373178636054\ 628207647520675194420244271036343729318858430871461978866964772362057\ 290577326080664463129657590249859748544101333842092713653096656066266\ 827446079145590196644643417403723220085696202719321533233027169599734\ 928971588850348415000070034027025298183104148343980297663148971586607\ 903771717880683175436445585810610546882073571556162324659351310326560\ 804448974229349743425637164834242799991427145050899469511954834774847\ 172360693568437689147399455672090773686782511054291185172381917008889\ 957645311339950993044779783607140593766508017935992581357858306525303\ 783231752425242008347844867988333025417249944092118578113687403158162\ 707075154006053416374075765162668533127078605316562826337193606242535\ 290683224423660462222408680300498714149607265550441220738075941633988\ 435051594487256802874182264814425923111193188280632013127802897889605\ 338783089532740877202304122498193625454768343775535498872821099981620\ 497070810489137457106892573248498734243717184800822956334469415666818\ 858073218653977954309023182851723246522042792401461382001601920501284\ 439325214084210736400630884929942272982943613708123011355260915545831\ 043160243523599372006226150289664982113944898886610710824955096724626\ 895416484521819026132177640598691658035986285376355033719094568083122\ 219345722063613609779158338084375331431276527548482566210071347744541\ 292871876134764249704859840950276227627328897424208932988115108907187\ 647698491814375639614313178092528678007370045871748218421786396197284\ 213209022623762734630836006864192414605237248983289006905268988475197\ 599781524158913583701325199090352274252608342971303907669363045656232\ 183978755853064004010895030834921988601355201181158877254807798058635\ 127708445592064519563115094749276606697559529332807221414021024905241\ 788974917755034700510432039890197393691722911126889174394312127254793\ 141624975830429097997705531781908242083922068769027355129212617244130\ 640289994777413026624013157329948333586377955103195844817163822484232\ 700763859290253400376515701986753596890075818544485475785780031843579\ 065754095099970940504640212850809997051128976563880886392410766321449\ 987529690463262182894272302749154535447233331028841215215533602398281\ 107050696017507827602761547816324743297938177204183765821117818869959\ 795031848201322436053103778993541384779857262311465895754085538371969\ 040922420936915076653500310175006188572019017358300979056992161958286\ 882575984331858170857303361269891312794369244896540323192451678830668\ 180455059289743580640736076233561935888109525845803125912388965524166\ 819855977061399043499229843517930169118036812460794615667808961600389\ 778306540324849286501515292799391304510997298128228258006156017389878\ 086272789993321416349205921635696963703558971391123174877353757536774\ 013315034956942784403824181551741629180658414081905650333672638983416\ 786388095026169496605199749691595798835947189777822765198767949699778\ 106683862989103096006505865271003566346191382406011673958404009194852\ 110016915222433459641787170917872140367871023596464051647947388580570\ 774462304347896201676197195521428782313608583714399238092208362933211\ 302942806480175589402387976531080436906856834377344137698180789562645\ 974374155400497754843905032231188252125802180353577510519869570675234\ 892321663406309376
1
Can N^N be rewritten as a formula in which the only base of any exponentiation is e?
1
pseudo-coup
1
They read the same forward and backward.
1
I think the Quebequois do the same thing.
1
@aftermath4096 Have to respect your earwitness report.
1
The proof has to show that for each case (each "type of number" in the terms of the proof), the algorithm given yields three palindromes.
1
As another reply points out, 1 is 1 + 0 + 0, and although you can rearrange it as 0 + 0 + 1 or 0 + 1 + 0, the same numbers are still there, and there is no other way to express it as the sum of palindromic numbers, so 1 has what we could regard as a unique solution.
1
@Stragemque They live on sap.
1
No. Are they unique for some number?
1
Yes and in COBOL, you can say DECIMAL POINT IS COMMA.
1
They read the same in both directions, and that is the definition.
1
You can write 0 as "" (the empty numeral), which then doesn't end in zero, and is a palindrome.
1
No. Are they for some numbers?
1
Previous
1
Next
...
All