Comments by "B" (@user-pr6ed3ri2k) on "Daily Dose Of Internet" channel.

  1. 4
  2. 3
  3. 3
  4. 2
  5. 2
  6. 2
  7. 2
  8. 2
  9. 2
  10. 2
  11. 2
  12. 2
  13. 2
  14. 2
  15. 2
  16. 2
  17. 2
  18. 2
  19. 2
  20. 2
  21. 2
  22. 2
  23. 2
  24.  @silecin  Hydrogen peroxide is a chemical compound with the formula H2O2. In its pure form, it is a very pale blue liquid, slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3–6% by weight) in water for consumer use, and in higher concentrations for industrial use. Concentrated hydrogen peroxide, or "high-test peroxide", decomposes explosively when heated and has been used as a propellant in rocketry. Hydrogen peroxide is a reactive oxygen species and the simplest peroxide, a compound having an oxygen–oxygen single bond. It decomposes slowly when exposed to light, and rapidly in the presence of organic or reactive compounds. It is typically stored with a stabilizer in a weakly acidic solution in a dark bottle to block light. Hydrogen peroxide is found in biological systems including the human body. Enzymes that use or decompose hydrogen peroxide are classified as peroxidases. Properties:: The boiling point of H2O2 has been extrapolated as being 150.2 °C (302.4 °F), approximately 50 °C (90 °F) higher than water. In practice, hydrogen peroxide will undergo potentially explosive thermal decomposition if heated to this temperature. It may be safely distilled at lower temperatures under reduced pressure. Structure: Hydrogen peroxide (H2O2) is a nonplanar molecule with (twisted) C2 symmetry; this was first shown by Paul-Antoine Giguère in 1950 using infrared spectroscopy. Although the O−O bond is a single bond, the molecule has a relatively high rotational barrier of 386 cm−1 (4.62 kJ/mol) for rotation between enantiomers via the trans configuration, and 2460 cm−1 (29.4 kJ/mol) via the cis configuration. These barriers are proposed to be due to repulsion between the lone pairs of the adjacent oxygen atoms and dipolar effects between the two O–H bonds. For comparison, the rotational barrier for ethane is 1040 cm−1 (12.4 kJ/mol). The approximately 100° dihedral angle between the two O–H bonds makes the molecule chiral. It is the smallest and simplest molecule to exhibit enantiomerism. It has been proposed that the enantiospecific interactions of one rather than the other may have led to amplification of one enantiomeric form of ribonucleic acids and therefore an origin of homochirality in an RNA world. The molecular structures of gaseous and crystalline H2O2 are significantly different. This difference is attributed to the effects of hydrogen bonding, which is absent in the gaseous state. Crystals of H2O2 are tetragonal with the space group D4 4 or P41212. Aqueous solutions: In aqueous solutions, hydrogen peroxide differs from the pure substance due to the effects of hydrogen bonding between water and hydrogen peroxide molecules. Hydrogen peroxide and water form a eutectic mixture, exhibiting freezing-point depression down as low as -56 °C; pure water has a freezing point of 0 °C and pure hydrogen peroxide of -0.43 °C. The boiling point of the same mixtures is also depressed in relation with the mean of both boiling points (125.1 °C). It occurs at 114 °C. This boiling point is 14 °C greater than that of pure water and 36.2 °C less than that of pure hydrogen peroxide. Comparison with analogues: Hydrogen peroxide has several structural analogues with HmX−XHn bonding arrangements (water also shown for comparison). It has the highest (theoretical) boiling point of this series (X = O, S, N, P). Its melting point is also fairly high, being comparable to that of hydrazine and water, with only hydroxylamine crystallising significantly more readily, indicative of particularly strong hydrogen bonding. Diphosphane and hydrogen disulfide exhibit only weak hydrogen bonding and have little chemical similarity to hydrogen peroxide. Structurally, the analogues all adopt similar skewed structures, due to repulsion between adjacent lone pairs.
    2
  25. 2
  26. 2
  27. 2
  28. 2
  29. 2
  30. 2
  31. 2
  32. 2
  33. 2
  34. 2
  35. 2
  36. 2
  37. 2
  38. 2
  39. 2
  40. 2
  41. 2
  42. 2
  43. 2
  44. 2
  45. 2
  46. 2
  47. 2
  48. 2
  49. 2
  50. 2