Youtube comments of (@NativLang).
-
4300
-
2100
-
1900
-
1500
-
1400
-
1300
-
1300
-
1300
-
1200
-
1200
-
1200
-
1100
-
914
-
912
-
847
-
843
-
796
-
710
-
702
-
662
-
634
-
594
-
592
-
584
-
583
-
579
-
579
-
565
-
550
-
532
-
530
-
525
-
522
-
513
-
511
-
505
-
499
-
479
-
469
-
445
-
435
-
434
-
432
-
414
-
410
-
401
-
380
-
369
-
358
-
355
-
346
-
340
-
333
-
300
-
297
-
284
-
263
-
248
-
245
-
244
-
236
-
235
-
227
-
225
-
222
-
215
-
202
-
201
-
198
-
194
-
183
-
182
-
179
-
176
-
174
-
168
-
167
-
162
-
161
-
158
-
155
-
149
-
148
-
143
-
140
-
138
-
133
-
131
-
130
-
127
-
124
-
124
-
122
-
121
-
120
-
112
-
109
-
108
-
107
-
102
-
101
-
98
-
96
-
96
-
94
-
91
-
91
-
90
-
88
-
86
-
85
-
85
-
84
-
84
-
80
-
79
-
78
-
77
-
75
-
73
-
72
-
71
-
68
-
65
-
65
-
64
-
63
-
63
-
63
-
62
-
62
-
61
-
61
-
61
-
59
-
59
-
58
-
58
-
58
-
57
-
56
-
56
-
55
-
53
-
52
-
52
-
52
-
49
-
49
-
49
-
49
-
49
-
48
-
48
-
47
-
46
-
45
-
45
-
44
-
43
-
43
-
43
-
43
-
43
-
43
-
43
-
42
-
41
-
41
-
40
-
40
-
40
-
39
-
38
-
38
-
37
-
37
-
37
-
37
-
36
-
36
-
36
-
36
-
36
-
35
-
35
-
35
-
35
-
35
-
35
-
34
-
34
-
32
-
32
-
31
-
31
-
31
-
31
-
30
-
30
-
30
-
30
-
29
-
29
-
29
-
29
-
29
-
28
-
28
-
28
-
28
-
28
-
27
-
27
-
27
-
27
-
27
-
26
-
26
-
26
-
25
-
25
-
25
-
25
-
25
-
25
-
25
-
25
-
25
-
24
-
24
-
24
-
24
-
24
-
23
-
23
-
23
-
23
-
23
-
22
-
22
-
22
-
22
-
22
-
22
-
21
-
21
-
20
-
20
-
20
-
20
-
19
-
19
-
19
-
19
-
19
-
19
-
19
-
19
-
19
-
18
-
18
-
18
-
18
-
18
-
18
-
17
-
17
-
17
-
17
-
17
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
16
-
15
-
15
-
15
-
15
-
15
-
15
-
15
-
14
-
14
-
14
-
14
-
14
-
14
-
14
-
14
-
14
-
14
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
13
-
Maybe it's unintuitive, but quite a bit of ancient evidence suggests /zd/, at least at some early point and in some dialects. Take the old standby, Dionysius Thrax, for example: ἔτι δὲ τῶν συμφώνων διπλᾶ μέν ἐστι τρία· ζ ξ ψ. διπλᾶ δὲ εἴρηται, ὅτι ἓν ἕκαστον αὐτῶν ἐκ δύο συμφώνων σύγκειται, τὸ μὲν ζ ἐκ τοῦ σ καὶ δ, τὸ δὲ ξ ἐκ τοῦ κ καὶ σ, τὸ δὲ ψ ἐκ τοῦ π καὶ σ.
Some authors do suggest /dz/ instead. The choices (and variability of those choices) still get debated in Hellenic linguistics.
Also keep in mind that, at an early point, the letter approached its modern pronunciation /z/ (possibly long thanks to compensatory lengthening).
I just found that the English wikipedia page for "Zeta" has a list of pro/contra points about this very debate! If you read some of the points there, you can get a feel for the discussion without digging into too much literature.
12
-
12
-
12
-
12
-
12
-
12
-
12
-
Spanish and later French - no exact date, but let's say mid 90's. Portuguese, Latin, Catalan and Romanian in the late 90's. Italian, Old Italian, Old Spanish, Old French and Sardinian in the early 2000's. I was also testing my skills with Greek and intermittently with Irish, Luiseño, some Polynesian languages and Japanese, so I took time to catch up with myself before trying to make more sense of some other Spanish languages, Italian "dialects" and Rhaeto-Romance (2011).
12
-
12
-
12
-
12
-
12
-
12
-
12
-
11
-
11
-
11
-
11
-
11
-
11
-
11
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
10
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
9
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
7
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
6
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
5
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
Ary Bu Suppletion might not work in the man/men example for historical reasons. I think of the past tense form of GO as suppletive ("goes", "going", "gone"... but... "went" !?!). GO and WENT have separate etymologies - English took forms from one word ("wenden") and shoved them into another word's ("gon") grammatical paradigm. However, man/men did not take its forms from another lexical item.
Consider the history of English and Germanic. Initially, Germanic mann- took a regular plural ending -iz: *mann-iz. That little "i" influenced the pronunciation of the root "a" (assimilation, more specifically, Germanic "Umlaut"). For comparison, these are the German words for man/men: Mann, Männer (roughly pronounced Menner).
Unlike German, English lost the plural noun ending on "men". That loss obscured the etymology of "men", giving the impression that the only factor is a vowel switch. English now has internal inflection where Germanic once had a suffix morpheme + assimilation in the root morpheme.
Now we have three analyses:
1 morpheme analysis:
"men" (unbreakable, and means something different than "man")
"mice" (unbreakable, and means something different than "mouse")
2 morpheme analysis, using Germanic ROOT + UMLAUT:
"man" + UMLAUT = "men"
"mouse" + UMLAUT = "mice"
Historical analysis, using suffix > assimilation > apocope:
mann + iz > menn + iz > men
When it comes to stem homosemy, "man" and "men" may belong to the same lexeme. But basic definitions of allomorph do not allow for changes in meaning, so "man" and "men" don't work like allomorphs of the same morpheme would.
I hope this makes things a bit clearer (well, as clear as Umlaut can be... sheesh!).
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
I get you. You're taking a logic or math class, right? I'll assume so for this answer.
Distributing universal quantifiers over a conjunction (P ∧ Q) works as you'd expect:
(∀x)(Fx ∧ Gx) = (∀x)(Fx) ∧ (∀x)(Gx)
If F and G are true of every element in domain, then F is true of every element in the domain and G is true of every element in the domain. "All cats and dogs" doesn't differ logically from "all cats and all dogs", if you don't mind the rough example.
Distributing universal quantifiers over a disjunction (P ∨ Q) doesn't work:
DANGER! : (∀x)(Fx ∨ Gx) =/= (∀x)(Fx) ∨ (∀x)(Gx)
If F or G is true of every element in the domain, then F isn't necessarily true of every element in the domain and G isn't necessarily true of every element in the domain. The first means that for each individual x, F is true of x or G is true of x. The second one means that F is true of every x, or G is true of every x. "All the ones that are cats or dogs" does differ logically from "all the ones that are cats or all the ones that are dogs", to extend my rough example. Agreed?
Imagine going through members of a set one by one. Conjunction expects you to take this one AND that one AND the next one... You end up with all of them. This is like the universal quantifier, which distributes nicely over conjunctions:
(∀x)(Fx ∧ Gx) = (∀x)(Fx) ∧ (∀x)(Gx)
Disjunction lets you go through the members and take this one OR that one OR the next one... You end up with one (or maybe more) of them. This is like an existential quantifier, which distributes nicely over disjunctions:
(∃x)(Fx ∨ Gx) = (∃x)(Fx) ∨ (∃x)(Gx)
Now the fun part. P → Q is equivalent to ~P ∨ Q. It's worth deriving this yourself if you don't see it right away, with truth tables or Venn diagrams for visual help. So your examples (∀x)(Fx → Gx) and (∀x)(Fx) → (∀x)(Gx) are equivalent to (∀x)(~Fx ∨ Gx) and (∀x)(~Fx) ∨ (∀x)(Gx). Now what was that we agreed to earlier about universal quantifiers and their distribution over a disjunction? ;)
Let me know if this helps!
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
Good question!
A very short answer:
They compared more data.
A better answer:
For fun, let's just look at the 3 languages on that tree (Spanish, Italian and Romanian). How does each language treat Latin 'ct' in 'octo'? What about Latin 'pt', like in the word 'septem'?
Latin > Spanish, Italian, Romanian
sePTem > sieTe, seTTe, șaPTe
oCTo > oCHo, oTTo, oPT
In Italian, both words have 'tt'. In Romanian, both have 'pt'. This doesn't give us a good reason to prefer 'pt'. On the other hand, Spanish 'ch' favors an ancestor with 'ct' (octo) instead of 'pt' (opto).
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
インフィニチキウィ Yep, I think you're getting the hang of this! The glyphs used to represent one grapheme (like 'V') are allographs of that grapheme. In this sense, 'glyph' is a general term for any single written or printed character. (Some fun logic here: all allographs of the grapheme "v" are glyphs, but not all glyphs are allographs of the grapheme "v". Wow, that's a mouthful!)
Linguists love these "eme" and "allo" terms. The "emes" are conceptual and abstract ("the letter v"). The "allos" are specific variants (v serif, v sans serif, cursive v, capital v, lowercase v, ...).
Some glyphs do get standardized (this happened long ago for Han Characters), but even those standard allographs compete with other allographs (like rough script / "grass script" forms).
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1