Comments by "Fhf Fhf" (@fhffhff) on "ВЫХОД ЕСТЬ!" channel.

  1. 3
  2. 2
  3. 2
  4. 2
  5. 2
  6. 2
  7. 2
  8. 2
  9. 2
  10. 1
  11. 1
  12. 1
  13. 1
  14. 1
  15. 1
  16. 1
  17. 1
  18. 1
  19. 1
  20. 1
  21. 1
  22. 1
  23. 1
  24. 1
  25. 1
  26. 1
  27. 1
  28. 1
  29. 1
  30. 1
  31. 1
  32. 1
  33. 1
  34. 1
  35. 1
  36. 1
  37. 1
  38. 1
  39. 1
  40. 1
  41. 1
  42. 1
  43. 1
  44. 1
  45. 1
  46. 1
  47. 1
  48. 1
  49. 1
  50. 1
  51. 1
  52. 1
  53. 1
  54. 1
  55. 1
  56. 1
  57. 1
  58. 1
  59. 1
  60. 1
  61. 1
  62. 1
  63. 1
  64. 1
  65. 1
  66. 1
  67. 1
  68. 1
  69. 1
  70. 1
  71. 1
  72. 1
  73. 1
  74. 1
  75. 1
  76. 1
  77. 1
  78. 1
  79. 1
  80. 1
  81. 1
  82. 1
  83. 1
  84. 1
  85. 1
  86. 1
  87. 1
  88. 1
  89. 1
  90. 1
  91. 1
  92. 1
  93. 1
  94. 1
  95. 1
  96. 1
  97. 1
  98. 1
  99. 1
  100. 1
  101. 1
  102. 1
  103. 1
  104. 1
  105. 1
  106. 1
  107. 1
  108. 1
  109. 1
  110. 1
  111. 1
  112. 1
  113. 1
  114. 1
  115. 1
  116. 1
  117. 1
  118. 1
  119. 1
  120. 1
  121. 1
  122. 1
  123. 1
  124. 1
  125. 1
  126. 1
  127. 1
  128. 1
  129. 1
  130. 1
  131. 1
  132. 1
  133. 1
  134. 1
  135. 1
  136. 1
  137. 1
  138. 1
  139. 1
  140. arcsincosx=cosarcsin(x-a)≤π/2,-π/2 arcsinsin(π/2-x)=sin(π/2-arcsin(x-a)) [{π/2-x=√(1-(x-a)²),π/2-x≤π/2,≥-π/2,arcsin(x a)є[-π/2+2πn;π/2+2πn];{π/2-x=-√(1-(x-a)²),π/2-x≤π/2,≥-π/2,arcsin(x -a)є[π/2+2πn;3π/2+2πn];{π-(π/2-x)=√(1-(x-a)²),π/2-x≥π/2,≤π,arcsin(x -a)є[-π/2+2πn;π/2+2πn];{π/2+x=-√(1-(x-a)²),π/2-x≥π/2,≤π,arcsin(x -a)є[π/2+2πn;3π/2+2πn];[{π²/4-πx+x²=1-(x-a)²,x≥0,≤π,arcsin(x-a)є[-π/2;π/2];{π²/4-πx+x²=1-(x-a)²,x≥0,≤π,arcsin(x-a)=π/2;{(π/2+x)²=1-(x-a)²,x≤0,≤-π/2,arcsin(x -a)є[-π/2;π/2];{(π/2+x)²=1-(x-a)²,x≤0,≥-π/2,arcsin(x-a)=π/2;[{x=(π+2a±√(π²+4aπ+4a²-2π²+8-8a²))/4π²/4,x≥0,≤π,x-aє[-1;1];{x=(π+2a±√((π+2a)²-4*2(π²/4-1+a²)))/4,x≥0,≤π,x-a=1;{x=(-π+2a±√((π-2a)²-4*2(π²/4-1-a²)))/4,x≤-π/2,x -aє[-1;1];{(π/2+x)²=0,x≤0,≥-π/2,x-a=1;[{x=0,25π+0,5a±√(-(π-2a)²+8)/4,x≥0,≤π,xє[a-1;a+1];{a+1=π/4+0,5a±√(-π²+4πa-4a²+8)/4,x≥0,≤π,x=a+1;{x=-π/4+0,5a±√(-π²-4πa+8+12a²)/4,x≤-π/2,xє[a-1;a+1];{x=-π/2,x≤0,≥-π/2,x=a+1;[{x=0,25π+0,5a±√(-(π-2a)²+8)/4,π-2a≤√8,π-2a≥-√8;aє[-1;1+π],xє[0;π]xє[a-1;a+1];{(0,5a+1-π/4)²=(-π²+4πa-4a²+8)/16,x≥0,≤π,x=a+1;{x=-π/4+0,5a±√(-π²-4πa+8+12a²)/4,(a-(4π+√(16π²-4*12(-π²+8)))/24)(a-(π/6-√(16π²+48π²-364)/4)≥0,+**+>а a≤1-π/2,x≤-π/2,xє[a-1;a+1];{x=-π/2,a=-π/2-1; {x=0,25π+0,5a±√(-(π-2a)²+8)/4,a≥0,5π-√2,a≤0,5π+√2,aє[-1;1+π],xє[0;π]xє[a-1;a+1];ає[0,5π-√2;0,5π+√2]ає[0,339;0,512] хє[1,339] [ає[0,339;0,512] хє[1,339],ає[π/6-√(4π²-22,75);1-π/2]x=-π/4+0,5a±√(-π²-4πa+8+12a²)/4,x≤-π/2,xє[a-1;a+1],а⁴-2πа³-(-1,5π²+4,25)а²+-(2+0,5π³-4,5π)а-17/16π²+π/2+π⁴/16+3=0, ає[-1;π-1]x≥0,≤π,x=a+1;х=-π/2,а=-π/2-1;[ає[π/6-√(4π²-22,75);1-π/2]U{-π/2-1}U[0,339;0,512],{a=2,26..,a=0,06,a=0,33,a =3,62>2,14.. aє[-1;π-1] ає[π/6-√(4π²-22,75);1-π/2]U{0,06}U{0,33}U[0,339;0,512],
    1
  141. 1
  142. 1
  143. 1
  144. 1
  145. 1
  146. 1
  147. 1
  148. 1
  149. 1
  150. 1
  151. 1
  152. 1
  153. 1
  154. 1
  155. 1
  156. 1
  157. 1
  158. 1
  159. 1
  160. 1
  161. 1
  162. 1
  163. 1
  164. 1
  165. 1
  166. 1
  167. 1
  168. 1
  169. 1
  170. 1
  171. 1
  172. 1
  173. 1
  174. 1
  175. 1
  176. 1
  177. 1
  178. 1
  179. 1
  180. 1
  181. 1
  182. 1
  183. 1
  184. 1
  185. 1
  186. 1
  187. 1
  188. 1
  189. 1
  190. 1
  191. 1
  192. 1
  193. 1
  194. 1
  195. 1
  196. 1
  197. 1
  198. 1
  199. 1
  200. 1
  201. 1
  202. 1
  203. 1
  204. 1
  205. 1
  206. 1
  207. 1
  208. 1
  209. 1