Comments by "Fhf Fhf" (@fhffhff) on "MrGEO"
channel.
-
3
-
2
-
2
-
{x+y=a,xy=b;{a³-15a+18=0,b=0,5a²-2,5; a=(-9+√(81-5³))¹/³+(..-..)..=2√5cos (1/3arccos(-9/5/√5)+2/3πn) b=10cos²(1/3arccos(-9/5/√5)+2/3 πn)-2,5 {y=√5cos(1/3arccos(-9/5/√5)+2/3πn)-+√(-2,5cos(2/3arccos (-9/5/√5)+4/3πn)),x=√5cos(1/3arc cos(-9/5/√5)+2/3πn)±√(-2,5cos (2/3arccos(-9/5/√5)+4/3πn)).n=0;2 x⁷+y⁷=129;(√5cos(1/3arccos(-9/5/√5)+4/3π)+√(-2,5cos(2/3arccos(- 9/5/√5)+8/3π)))⁷+(√5cos(1/3arcco s(-9/5/√5)+4/3π)-√(-2,5cos(2/3arc cos(-9/5/√5)+8/3π)))⁷
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
Х=(-а±√((а-2116)(а-1936)))/2+ 1012 а(-=;1936]U[2116;°) (a-2026)²-90²=n²,[{a=4052,n=2024;{a=2704,n=672;{a=2436,n=400;{a=2260,n=216;{a=2166,n=110;{a=2128,n=56;{a=2128,n=48;{a=2116,n=0;{a=2128,n=48;{a=2132,n=-56;{a=2166,n=-110;{a=2260,n=-216;{a=2436,n=-400;{a=2704,n=-672;{a=4052,n=-2024; 9×2=18
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
X[0;3+√14),(x-1,5)⁴-18,5(x-1,5)²+76 9/16=0 (x-1,5)²=(18,5±6)/2=12,25; 6,25 x-1,5=±3,5;±2,5 x=5;-2;4;-1{5;4}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
0=42-х¹/⁴-14√х+х (z-7/3)³-175/12(z-7/3)-36'875/64/27=0 z-7/3=(295/2+√(295²-7³*128*2)/2)¹/³*5/12+(..-..)..=5/3*7⁰,⁵cos(1/3 arccos(295/112/√7)+2/3πn)
3,8/112<0,04 z=7/3+5/3*7⁰,⁵cos(1/3arccos (295/112/√7)+2/3πn) x¹/⁴=√(7/3+ 5/3*7⁰,⁵cos(1/3arccos(295/112/√7)))+√(7/3+5/3*7⁰,⁵cos(1/3arcco s(295/112/√7)+2/3π))+√(7/3+5/3* 7⁰,⁵cos(1/3arccos(295/112/√7)+4/ 3π))✓;-√-√+√×;-√+√-√×;√-√-√✓ x=(√(7/3+ 5/3*7⁰,⁵cos(1/3arccos(295/112/√7)))-√(7/3+5/3*7⁰,⁵cos(1/3arcco s(295/112/√7)+2/3π))-√(7/3+5/3* 7⁰,⁵cos(1/3arccos(295/112/√7)+4/ 3π)))⁴✓
1
-
1
-
1
-
a=0,5arcsin0,6(-1)^n+πn/2 b=a-30°;150°-2πm=0,5arcsin0,6-π/6 +π(n-2m);0,5arcsin0,6-5/6π+π(n-2m);π/3-0,5arcsin0,6+π(n-2m);-π/3-0,5 arcsin0,6+π(n-2m) sin(a+b)=0,6;-0,3√3-0,4;0,4±0,3√3
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{(x²/³+y²/³)²-2x²/³y²/³=17,(x²/³+y²/³)((x²/³+y²/³)²-3x²/³y²/³)=65;{x²/³+y²/³=a,x²/³y²/³=y;{b=0,5a²-17/2,a³-51a+130=0;a=(-65+√(65²-17³))¹/³+(..-..)..=2√17cos (1/3arccos(-65/17/√17)+2/3πn), b=34cos²(1/3arccos(-65/17/√17)+ 2/3πn)-8,5{y=±(√17cos(1/3arcco s(-65/17/√17)+2/3πn)-+√(-8,5cos (2/3arccos(-65/17/√17)+4/3πn))) ¹,⁵, x=±(√17cos(1/3arccos(-65/17/√17)+2/3πn)±√(-8,5cos(2/3arcco s(-65/17/√17)+4/3πn)))¹,⁵,n=0;2.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
гл(а)(а).. Нет б,е,и,й,к,п,р,с,т,у,ф,ы. Гладь!
1
-
1
-
1
-
{y=(26-x^(2x))^(0,5/x),x^(2(26-x^(2 x))^(0,5/x))+(26-x^(2x))^((26-x^(2x)) ^(0,5/x)/x)=5,x^(x+(26-x^(2x))^(0,5/x))+(26-x^(2x))^((x+(26-x^(2x))^(0, 5/x))/2/x)=7;{x=2,1322,y=0,9349; 2,9601~✓
1
-
1
-
X1=x2+x3,х-1+х-2+х3=-b, x1x2+x1x3+x2x3=c, x1x2x3=-d,x1=-b/2, b²/4+x2x3=c, x2x3=-d/-b*2, c-b²/4=2d/b, -x2²-b/2*x2+b2/4-c=0, x2=(0,5b+√(0,25b²-4(-1)(b²/4-c)))/(-2), x3=-025+0,5√(1,25b²-4c),
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(x³/18-3/2)³=9(2x+3) 0,5((x³/18-3/2) ²*x²-36)=0 x⁴-27x-+108=0 z³±27/2z-729/64=0 z=(1/2+√2049/2)¹/³*9/4+(...-..)..;- (1/2+√2049/2)¹/³*9/8-(...-..)..±√(3/4 ((1/2+√2049/2)¹/³*9/4+(...-..)..)²+2 7/2)i z=9*2¹/²cos(1/3arccos(1/32/√2)+2/3πn) x=√((1/2+√2049/2)¹/³* 9/4+(...-..)..)±2√(0,5√(((1/2+√2049/ 2)¹/³*9/4+(...-..)..)²+27/2)-(1/2+√204 9/2)¹/³*9/16-(...-..)..) ×+*+>x max=((√((1/2+√2049/2)¹/³*9/4+(...-..)..)-2√(0,5√(((1/2+√2049/2)¹/³*9/4+(...-..)..)²+27/2)-(1/2+√204 9/2)¹/³*9/16-(...-..)..))³/18-1,5)³-18 (√((1/2+√2049/2)¹/³*9/4+(...-..)..) 2√(0,5√(((1/2+√2049/2)¹/³*9/4+(...-..)..)²+27/2)-(1/2+√2049/2)¹/³ 9/16-(...-..)..))-27?0 min=((√((1/2+√2049/2)¹/³*9/4+(...-..)..)+2√(0,5√(((1/2+√2049/2)¹/³*9/4+(...-..)..)²+27/2)-(1/2+√204 9/2)¹/³*9/16-(...-..)..))³/18-1,5)³-18 (√((1/2+√2049/2)¹/³*9/4+(...-..)..)+ 2√(0,5√(((1/2+√2049/2)¹/³*9/4+(...-..)..)²+27/2)-(1/2+√2049/2)¹/³* 9/16-(...-..)..))-27<0 3 решения х=4,85;-1,85;-3✓
1
-
1
-
1
-
1
-
1
-
{x=z³-y²,[y=0,y=-1;z=0,z=1,z=(1±√5)/2;z=0,2z⁵-z³+z±√(z³-z)(z²-1)=0;[{z=0,yR;{z≠0,[y=z,y=±√(z³-z);
4z⁹-4z⁷-z⁶+5z⁵+3z⁴-2z³-3z²+z+1=0 36z⁸-28z⁶-6z⁵+25z⁴+12z³-6z²-6z+1=0 z[-1;0]U[1;≠)+ z=-0,43{(0;0;0)(-1;-1;0)(0;1;1)(1/2±√5/2;1/2±√5/2; 1/2±√5/2)(-0,43;-0,59;-0,43)}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
у=75°-х, sin²x+sin²(75°-x)=3/4, (1-cos2x)/2+(1-cos(150°-2x))/2=3/4, cos2x+cos(150°-2x)=1/2,2cos75°cos(2x-75°)=1/2, cos(2x-75°)=1/4/√((√3-1)²/4),2x-75°=±arccos(0,25/(√3-1)*2)+2πn,nєZ, x=37,5±0,5arccos(0,25(√3+1))+πn,nєZ, y=37,5-+0,5arccos(0,25(√3-1))-πn,
-√3/2=2²-1, =√((-√3/2+1)/2)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(x²-6x+a²+2a)/(2x²-ax-a²)=0,2 разл.реш. {х=(6±√(36-4(а²+2а)))/2,2х²-ах-а²≠0;{х=3 ±√(-а²-2а+9),х≠(а±√(а²-4*2*а²))/4=а/4± √9а/4;{х=3±√(-а²-2а+9),[х≠а,х≠-0,5а;-а²-2 а+9>0,(а-(2+√(4-4*-1*9))/-2)(а-(2-√4 0)/-2)<0,-1-√10+°-1+√10-°+>а,ає(-1-√10; 1+√10),3+√(-а²-2а+9)=а,√(-а²-2а+9)=-3 +а,{-а²-2а+9=9-6а+а²,-3+а≥0;{-2а²+4а=0, а≥3;{-2а(а-2)=0,а≥3;{[а=0,а=2,а≥3;0/3+√ (-а²-2а+9)=-0,5а,√(-а²-2а+9)=-3-0,5а≥0,{-а²-2а+9=9+3а+0,25а²,-3-0,5а≥0;{-1,25а²-5а=0,а≤-6;{[а=0,а=-4;а≤-6;0/ 3-√(-а²-2а+9)=а,√(-а²-2а+9)=3-а,а=0;2 3-√(-а²-2а+9)=-0,5а,√(-а²-2а+9)=3+0,5а,а=0;-4 ає(-1-√10;-4)U(-4;0)U(0;2)U(2;-1+√1 0)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
3^log0,6(log(3)5)-5^log0,6(log(3)5)≥3^x-5^x=4(x-0,75)²-2,25≥-2,25 1 koren x[0,75; ∞)х=1(-2=-2),хє[-log3(5);0,75)\>=\> х=0 x<log(0,6)log3(5),/>=\>x=-1,7 0/ {1;0}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1