Youtube comments of Fhf Fhf (@fhffhff).
-
39
-
29
-
24
-
16
-
14
-
12
-
11
-
10
-
9
-
9
-
9
-
6
-
5
-
5
-
5
-
xy+xz+yz+1/x+2/y+5/z y+z-x-²=0 x=±1/(y+ z)⁰,⁵ +*+>x min=y/(y+z)⁰,⁵+z/(y+z)⁰,⁵+yz+(y+z)⁰,⁵+2/y+5/z ..'=((y+z)⁰,⁵-y*0,5(y+z)-⁰,⁵)/(y+z)+z*0,5(y+z)-⁰,⁵+z+0,5(y+z)-⁰,⁵-2y-²=0 {y≤√(2/z),y≥-√(2/z),[0=(z²+3z³)y⁷+(-1-z-0,2 5z²)y⁶+(-7z-2,5z²-0,5z³+3z⁴)y⁵+(-14,25z²-1, 5z³-0,25z⁴+z⁵)y⁴+(4-12z³)y³+(12z-4z⁴)y²+1 2z²y+4z³;+*z^-0,5->y z^-0,25(1+z¹,⁵)-⁰,⁵+z ¹,²⁵(1+z¹,⁵)-⁰,⁵+z^0,5+z^-0,25(1+z¹,⁵)⁰,⁵+2z⁰,⁵+5z-¹ ...'=-0,25z^-1,25(1+z¹,⁵)-⁰,⁵+z^-0,25-0,5(1+z¹,⁵)-¹,⁵*1,5z⁰,⁵+1,25z^0,25(1+z¹,⁵)-⁰,⁵+z^1,25*-0,5(1+z¹,⁵)-¹,⁵*1,5z⁰,⁵+z-⁰,⁵-5z-²=0, {(-0,25z^0,75+0,25z^2,25+0,875z^3,75)²/(1+z¹,⁵)³=(-z¹,⁵+5)², z⁰,⁷⁵(1/343z⁰,⁵-393/98 ²+(z+1/7z⁰,⁵-1/98)²)/(z¹,⁵-5)≤0*0+°5^(2/3) *(14 1/28)²+>z; 395/9604+√3/4802<0,(-1/14)-1571/2401/4²<0 z=(14 1/28)² {(-0,25z^0,75+0,25z^2,25+0,875z^3,75)²=(1+3z¹,⁵+3z³+z⁴,⁵)(z³-10z¹,⁵+25),z{0}U(5^(2/3);(14 1/28)²];{[z¹,⁵=-1,29,z¹,⁵=3,10, z¹,⁵=31,74;z{0}U(5^(2/3);(14 1/28)²]; z=31,74^(2/3)=10,1124<197,..*+>z min= 22 19/36
5
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
4
-
3
-
3
-
3
-
3
-
3
-
(x²+1)y''+xy'-xy=0, (x²+1)(u''+u'²)+xu'-x=0, (u'+0,5x/(x²+1))'+(u'+0,5x/(x²+1))²=(x³-0,2 5x²+x+0,5)/(x²+1)² u'+0,5x/(x²+1)=z,z'+z² =0,z-1/-1+x=c,z=1/(x-c),n-1≤2n,n=-0,5≥-1 z=a(-0,5)x-⁰,⁵+...+a0 0,5a(-0,5)x-¹,⁵+...+a ²(-0,5)x-¹+...+2a(-0,5)a(-1,5)x-²+...=(x³-0,2 5x²+x+0,5)/(x²+1)²=0,5+x-x³-0,5x²+... {a1=-a0²+0,5,a2=a0³-0,5a0+0,5,a3=-a0⁴+1/3a0²-1/4, a4=a0⁵-2/3a0³+0,25a0²+0,25a0 0,375,..;z=a0+(-a0²+0,5)x+(a0³-0,5a0+0,5) x²+(-a0⁴+1/3a0²-1/4)x³+...[u'=-0,5x/(x²+1) +1/(x-c),u'=-0,5/(x²+1)+a0+(-a0²+0,5)x+(a0³-0,5a0+0,5)x²+(-a0⁴+1/3a0²-1/4)x³+...;[u=c1-0,25ln|x²+1|+ln|x-c|,u=c1-0,25ln|x²+ 1|+a0x+(-0,5a0²+0,25)x²+(a0³/3-1/6a0+ 1/6)x³+(-a0⁴/4+1/12a0²-1/16)x⁴+...;[y=c1 (x²+1)-⁰,²⁵(x-c),y=c1(x²+1)-⁰,²⁵e^(a0x+(-0,5 a0²+0,25)x²+(a0³/3-1/6a0+1/6)x³+(-a0⁴/4+1/12a0²-1/16)x⁴+...).
3
-
3
-
3
-
3
-
3
-
an=$(√3;2√2)(x^(2n-3)√(x²+1)-x^(2n-5)√(x ²+1)+..+(-1)^(n-2)*x√(x²+1)-(-1)^(n-2)x/√(x² +1))dx=(x²+1)^(n+0,5)/(n+0,5)/2-(n-1)(x²+ 1)^(n-0,5)/(n-0,5)/2+((n-1)(n-2)/2-1)(x²+1) ^(n-1,5)/(n-1,5)/2+(-n²+3n+4)(n-3)/6(x²+1) ^(n-2,5)/(n-2,5)/2+...(x²+1)^2,5/5+(-1)^(n- 2)(x²+1)¹,⁵/3-(-1)^(n-2)(x²+1)⁰,⁵|(√3;2√2)= 3^(2n+1)/(n+0,5)/2-(n-1)3^(2n-1)/(n-0,5)/2+((n-1)(n-2)/2-1)3^(2n-3)/(n-1,5)/2+(-n²+ 3n+4)(n-3)/4*9^(n-2)/(n-2,5)+...211/5+(-1) ^(n-2)*5 1/3-2^(2n)/(n+0,5)+(n-1)2^(2n-2)/(n-0,5)+((n-1)(n-2)/2-1)*2^(2n-4)/(n-1,5)-(- n²+3n+4)(n-3)/6*4^(n-2)/(n-2,5) a1=1,a2= 30 1/5
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
(x-2)(x+3)(x+4)(x-6)=16x² x⁴-x³-42x²-18 x+144=0 (x²-0,5x-21,125)²-39,125x-302 17/64=0 (x²-0,5x+12)²-66,25(x²+24/26 5x)=0 x=-1,624;3,207 x²+0,583x-35,6689 43=0 x=5,688;-6,271|x²-1,583x-5,208168
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
3
-
2
-
2
-
2
-
2
-
2log(3)tgx=log(2)sinx,{tgx>0,sinx>0;{xє(πn;π/2+πn),xє(2πn;π+2πn);xє(2πn;π/2+2πn) log(3)tg²x=log(2)sinx,tg²x=3^log (2)sinx,≤1,xє(2πn;π/4+2πn),3^log(2)(√2/2)=3^-0,5,tgx=3^-0,25,x=arctg3^-0,25+πn, π/4>arctg3^-0,25>33°..x=π/6,3/9=3^log(2)0,5=3^-1=1/3,✓ x=π/6+2πn,2tgx*1/cos²x-3^l0g(2)sinx*ln3*1/sinx/ln2*cosx=0, />,2*√3/3/(3/4)-3^lo g(2)0,5ln3/0,5/ln2*√3/2=8√3/9-1/3*log (2)3*√3/2=√3/3(8/3-log(2)3/2)<0,a значит функция убывает и при хє(2π n;π/6+2πn) решений нет.
2
-
507/2,5=202,8 маш.2,5+1,5+0,5*201=4+100,5=104,5т, 104,5/3=34,8(3)т
2
-
2
-
2
-
{√x+y=7,x+√y=11;{y=7-√x,x+√(7-√x)=11; √(7-√x)=-x+11,7-√x=x²-22x+121,x≤11,x=(-x²+22x-114)²,x²-22x+114≤0,(x-(22+√(484- 4*114))/2)(x-(11-√(484-456)/2))≤0+*11- √7-11+√7+>x xє[11-√7;11+√7],хє[11-√7; 11]*/> 11-√7>0,11<49,11+√7>0,-(11+√ 7)/((11+√7+38)/√7)+11+√7=-(11√7+7)/(49+√7)+11+√7=-(11√7*49-77+7*49-7√7)/(49²-7)+11+√7=-(532√7+266)/2394+11 +√7=7√7/9+10 8/9,х=12,9..х=7,9..х⁴-44х³ +672х²-5017х+114²|х-12,9..=х³-21,1х²+39 9,81х+140,549,х³-21,1х²+398,81х-140,549|х-7,9=х²-13,2х+294,53 х=(13,2±√(13,2²- 4*294,53))/2,х=6,6±√-1003,88/2 0/х=12,9>11,х=7,9.. у=7-√7,9..=7-(3-0,18)= 4,18..
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
{x+y=a,xy=b;{a³-15a+18=0,b=0,5a²-2,5; a=(-9+√(81-5³))¹/³+(..-..)..=2√5cos (1/3arccos(-9/5/√5)+2/3πn) b=10cos²(1/3arccos(-9/5/√5)+2/3 πn)-2,5 {y=√5cos(1/3arccos(-9/5/√5)+2/3πn)-+√(-2,5cos(2/3arccos (-9/5/√5)+4/3πn)),x=√5cos(1/3arc cos(-9/5/√5)+2/3πn)±√(-2,5cos (2/3arccos(-9/5/√5)+4/3πn)).n=0;2 x⁷+y⁷=129;(√5cos(1/3arccos(-9/5/√5)+4/3π)+√(-2,5cos(2/3arccos(- 9/5/√5)+8/3π)))⁷+(√5cos(1/3arcco s(-9/5/√5)+4/3π)-√(-2,5cos(2/3arc cos(-9/5/√5)+8/3π)))⁷
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
(x²)²-3x²+1=0,x²=(3±√(9-4*1))/2[x²=1,5 +√5/2,x²=1,5-√5/2;[x=±(√5+1)/2,x=±(√5- 1)/2; x⁵-x^-5=(√5+1)⁵/2⁵-(√5+1)^-5/2^-5= (176+80√5)/32-32/(176+80√5)=5,5+2,5 √5-1/(5,5+2,5√5)=5,5+2,5√5-(5,5-2,5√5)/(5,5²-2,5²*5)=11,=-11,=((√5-1)/2)⁵-1/(√5/ 2-1/2)⁵=(80√5-176)/32-32/(80√5-176)= 2,5√5-5,5-2(5√5+11)/4=-11,=11
2
-
2
-
2
-
2
-
2
-
2
-
2
-
x=(103±√(103²-2c))/2,c≤5304,5 x1x2=c/2>0,c≥8 103²-2c=(2n+1)² c=(51-n)(104+2n),n=44 c=7*192 n=38,c=13*180 n=8,c=43*120 n=15,c=36*134 n=27,c=24*158 n=45,c=6*194,n=51;-52,c=0
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
log3(x²)<log1,5(0,5){x²<3^log1,5(0,5), x²>0;{x<3^(0,5log1,5(0,5)),x>-3^(0,5log 1,5(0,5)),x≠0;x(-3^(0,5log1,5(0,5));0)U(0;3 ^(0,5log1,5(0,5)))
2
-
2
-
2
-
2
-
y'-4y=e^5xcos3x k-4=0 k=4,y0=c1e^4x y=e^5x(c2sin3x+c3cos3x) e^5x*5(c2sin3 x+c3cos3x)+e^5x(3c2cos3x-3c3sin3x)-4 e^5x(c2sin3x+c3cos3x)=e^5xcos3x {5c2 -3c3-4c2=0,5c3+3c2-4c3=1;{c2-3c3=0, -3 1/3c3=-1/3;{c2=-0,3,c3=-0,1.yp=e^5x(-0,3 sin3x-0,1cos3x) y=c1e^4x+e^5x(-0,3sin3 x-0,1cos3x)
2
-
2
-
2
-
2
-
2
-
2
-
√2r=(√(2r²-2r²cosa-9)+√(2r²-2r²sina-36))²+3², √2r=2r²-2r²cosa-9+2√(2r²-2r²cosa-9)(2r²-2r²sina-36)+2r²-2r²sina-36+9, 2√(2r²-2r²cosa-9)(2r²-2r²sina-36)=(-4+2co sa+2sina)r²+√2r+36,4(2r²-2r²cosa-9)(2r²-2r²sina-36)=((-4+2cosa+2sina)r²+√2r+36)², (16-16sina-16cosa+16sinacosa)r ⁴+(-(8-4cosa)36-(8-8sina)9)r²+36*36=(- 4+2cosa+2sina)²r⁴+2√2(-4+2cisa+2sina)r³+72(-4+2cosa+2sina)r²+2r²+72√2r+36²,(16-16sina-16cosa+16sinacosa-(-4+2cosa+2sina)²)r⁴+(-8*36+144cosa-72+72sina+288-144cosa-144sina-2)r²-2√2(-4+2cisa+2sina)r³-72√2r=0,r=0,(16-16sina-16cosa+16sinacosa 16-4cos²a-4sin²a+16cosa+16sina-8sinacosa)r³+(-74-72sina)r-2√2(-4+2c0sa+2sin a)r²-72√2=0, (-4cos²a+8sinacosa-4sin²a) r³+(8√2-4√2cosa-4√2sina)r²-(74+72sina)r-72√2=0, (r+(-2√2+√2cosa+√2sina)/(cosa-sina)²/3)³+((74+72sina)/(cosa-sin a)²-(-2√2+√2cosa+√2sina)²/(cosa-sina)⁴/3)(r+(-2√2+√2cosa+√2sina)/(cosa-sina)²/3)-(-2√2+√2cosa+√2sina)³/(cosa-sina)⁶/27-(74+72sina)/(cosa-sina)²-(-2√2+√2c osa+√2sina)²/(cosa-sina)⁴/3)(-2√2+√2c osa+√2sina)/(cosa-sina)²/3+18√2/(cosa sina)²=0,r+(-2√2+√2cosa+√2sina)/(cosa-sina)²/3=((-2√2+√2cosa+√2sina)³/(cosa-sina)⁶/54+(37+36sina)/(cosa-sina)²+2(-√2+√2/2*cosa+√2/2*sina)²/(cosa-sina)⁴/3)(-2√2+√2c osa+√2sina)/(cosa-sina)²/3-9√2/(cosa- sina)²+√((-(-2√2+√2cosa+√2sina)³/(cosa-sina)⁶/27-(74+72sina)/(cosa-sina)²-(-2√2+√2cosa+√2sina)²/(cosa-sina)⁴/3)(-2√2+√2c osa+√2sina)/(cosa-sina)²/3+18√2/(cosa- sina)²)²/4+((74+72sina)/(cosa-sin a)²-(-2√2+√2cosa +√2sina)²/(cosa-sina)⁴/3)³/27))^(1/3)+(-(-2√2+√2cosa+√2sina)³/(cosa-sina)⁶/27-(74+72sina)/(cosa-sina)²-(-2√2+√2c osa+√2sina)²/(cosa-sina)⁴/3)(-2√2+√2c osa+√2sina)/(cosa-sina)²/3+18√2/(cosa- sina)²-√((-(-2√2+√2cosa+√2sina)³/(cosa-sina)⁶/27-(74+72sina)/(cosa-sina)²-(-2√2+√2c osa+√2sina)²/(cosa-sina)⁴/3)(-2√2+√2c osa+√2sina)/(cosa-sina)²/3+18√2/(cosa- sina)²)²/4+((74+72sina)/(cosa-sina)²-(-2√2+√2co sa+√2sina)²/(cosa-sina)⁴/3)³/27))^(1/3) r=-(-(-2√2+√2c osa+√2sina)/(cosa-sina)²/3+((-2√2+√2cosa+√2sina)³/(cosa-sina)⁶/54+(37+36sina)/(cosa-sina)²+2(-√2+√2/2*cosa+√2/2*sina)²/(cosa-sina)⁴/3)(-2√2+√2c osa+√2sina)/(cosa-sina)²/3-9√2/(cosa- sina)²+√((-(-2√2+√2cosa+√2sina)³/(cosa-sina)⁶/27-(74+72sina)/(cosa-sina)²-(-2√2+√2c osa+√2sina)²/(cosa-sina)⁴/3)(-2√2+√2c osa+√2sina)/(cosa-sina)²/3+18√2/(cosa- sina)²)²/4+((74+72sina)/(cosa-sin a)²-(-2√2+√2cosa +√2sina)²/(cosa-sina)⁴/3)³/27))^(1/3)+(-(-2√2+√2cosa+√2sina)³/(cosa-sina)⁶/27-(74+72sina)/(cosa-sina)²-(-2√2+√2c osa+√2sina)²/(cosa-sina)⁴/3)(-2√2+√2c osa+√2sina)/(cosa-sina)²/3+18√2/(cosa- sina)²-√((-(-2√2+√2cosa+√2sina)³/(cosa-sina)⁶/27-(74+72sina)/(cosa-sina)²-(-2√2+√2c osa+√2sina)²/(cosa-sina)⁴/3)(-2√2+√2c osa+√2sina)/(cosa-sina)²/3+18√2/(cosa- sina)²)²/4+((74+72sina)/(cosa-sina)²-(-2√2+√2co sa+√2sina)²/(cosa-sina)⁴/3)³/27))^(1/3)
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
√(10²-2²)=√96,√(6²-(6-AB)²)=√(36-36+12AB-AB²)=√(12AB-AB²) √(8AB-AB²),√(12AB -AB²)+AB+√(8AB-AB²)=√96,AB≥0,≤4 12AB-AB²+2AB√(12AB-AB²)+AB²=96-2√ 96√(8AB-AB²)+8AB-AB²,2AB√(12AB-AB²) =-AB²-4AB+96-8√6√(8AB-AB²),48AB³-4AB ⁴=AB⁴+16AB²+96²+8²*6(AB-AB²)+8AB³ -192AB²+16√6AB²(√8AB-AB²)-768AB+64√6AB√(8AB-AB²)-192*8√6√(8AB-AB²),-5AB⁴+40AB³+560AB²+384AB-9216=(16AB²+64AB-1536)√6√(8AB-AB²),(-5AB⁴+40AB³+ 560AB²+384AB-9216)²=(256AB⁴-64*704AB²+1536²+32*64AB³-128*1536AB)*6(8AB-AB²),25AB⁸+1600AB⁶+560²AB⁴+384² AB²+9216²-400AB⁷-5600AB⁶-3840AB⁵+92160AB⁴+80*5600AB⁵+80*384AB⁴-8*9216AB³+2*569*384AB³-1120*9216AB²-2*384*9216AB=256*48AB⁵-256*6AB⁶-64*704*48AB³+64*4224AB⁴+1536²*48AB-1536²*6AB²+32*64*48AB⁴-32*384AB⁵-128*1536*48AB²+128*9216AB³,25AB⁸-400AB⁷-2464AB⁶+444'160AB⁵+67'840AB⁴+1'346'304AB³+13'418'496AB²-120'324'096AB+84'934'656=0,
2
-
2
-
2
-
2
-
f(x)=1/2*f(3x),f(1-x)=1-f(x);f(1/13)=? f(x)=1-f(1-x),
f(1/2)=1/2,f(0)=0,
f(12/13)=1-f(1/13),f(1/13)=0,5f(3/13), f(3/13)=0,5f(9/13)=2f(1/13),f(4/13)=0,5f(12/13),f(9/13)=1-f(4/13),4f(1/13)=1-0,5(1-f(1/13))=0,5+0,5f(1/13), f(1/13)=0,5/3,5=1/7,
2
-
2
-
2
-
2
-
2
-
@СеваПадалка {b=2/a,c=3-2/a, d=4a/(3a-2),3a²-13a+10=0;[a=1,a=10/3;[b=2,b= 0,6;[c=1,c=2,4;[d=4,d=5/3;{(1;2;1;4)(10/3 ;0,6;2,4;5/3)}
2
-
2
-
2
-
2
-
2
-
х/1=(х+1)/...,..=(х+1)/х (х+1)²+(х+1)²/х²= 4²,х²+2х+1+(х2+2х+1)/х²-16=0,х⁴+2х³-1 4х²+2х+1=0,(х²+х-7,5)²+17х-55,25=0,\*/*\*/17(-0,5-√(1-4*-7,5)/2)-55,25=-63,75 -17√31/2<0,х<-0,5-√31/2✓,(0,5^2+1*-0,5 -7,5)²+17*-0,5-55,25=7,25²-63,75=-10 3/ 16<0 -63,75+17√31/2<0,х>-0,5+√31/✓х =-4 1/4-√31,х=-3 1/4+√31,хє(0;4){-3 1/4+ √31}
2
-
2
-
2
-
2
-
2
-
{х²+20х+у²-20у+75=|х²+у²-25|,х-у=а;[{хє(-∞;-5]U[0;∞),у=х+5,-5=а;{хє(-5;0) у=5-√(25-(x+5)²),х-5+√(25-(х+5)²)=а;1+0,5(25-(х+5)²)^-0,5*-2(х+5)=0,(х+5)/(25-(х+5)²)=1,(х+5)²/(25-(х+5)²)=1,(х+5)² =25-(х+5)²,(х+5)²=12,5 х+5=±√12,5,х=-5± √12,5≥-5,х=-5+√12,5+*->х максимум-5+ √12,5-5+√(25-(-5+√12,5+5)²)=-10+√12,5+√(25-12,5)=-10+√12,5+√12,5=2√12,5-10,-10+√(25-0²)=-10+5=-5,0-5+√(25-5²)=-5,ає(-5;2√12,5-10);ає[-5;2√12,5-10).
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
{(x+1)²+(y+2)²=25,z²+(w-1)²=144,xw+yz-x +w+2z-61≥0,x≥(-yz-w-2z+61)/(w-1),w-1≥0, w≥1 x=±√(25-(y+2)²)-1,z=±√(144-(w-1)²), ±√(25-(y+2)²)-1≥(-y*±√(144-(w-1)²)-w+61)/(w-1),±√(25-(y+2)²)(w-1)≥-+y√(144-(w- 1)²)-w+61,[{(-y²-4y+21)(w-1)²≥(-y√(-w²+2w +143)-w+61)²,-y√(-w²+2w+143)-w+61≥0, y√(-w²+2w+143)-w+61<0;[{-yw²+2wy-y² 4yw²+8yw-4y+21w²-42w+21≥y²(-w²+2w+143)+w²+3721+2yw√(-w²+2w+143)-122y√(-w²+2w+143)-122w,y√(-w²+2w+143)≤-w+61;[{-y²w²+2y²w+143y²≤w²-122w+37 21,y≥0;{y<0,✓;[{-5yw²-2wy²+w²y²+10wy-144y²+ -4y+20w²+80w-3700≥(2yw-122y)√(-w²+2w+143),y≤-w+6/√(-w²+2w+143);[{-y²w²+2y²w+143y²≤w²-122w+3721,y≥0;{y<0,✓;[{(y-(5w²-10w+4+2(w-61)√(-w²+2w+143)+√((5w²-10w+4+2(w-61)√(-w²+2w+143))²-4+w²-2w-144)(20w²+60w-3700)))/2/(w²-2w-144))(y(-5w²-10w+4+2(w-61)√(-w²+2w+143)-√((5w²-10w+4)²+4(5w²-10w+4)(w-61)√(-w²+2w+143)+4(w-61)²(-w²+2w+143)-80w⁴-80w³+26800w²+5760w-2131200))/2/(w²-2w-144))≤0,
,y≤(-w+61)/√(-w²+2w+143);[{-y²w²+2y²w+143y²≤w²-122w+3721,y≥0;{y<0,✓;
2
-
2
-
2
-
2
-
2
-
2
-
√(a²/4-(a-x)²)+a/2=√(a²-x²),x[a/2;a] 0=5x²-8xa+3a²,x≤0,75a x=a;0,6a✓ S1=(0,5arccos0,6-0,4)a² S2=(π/8- 1/8arccos0,6-0,1)a² S=S1+S2=(0,375arccos0,6-0,5+π/8)a²
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
2
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(x-2010)P(x+67)=xP(x), x=2010, P(2010)=0, (67m-2010)P(67m+67)=67mP(67m), (m-30)P(67(m+1))=mP(67m), P(67(m+1))=m/(m-30)*P(67m), a0(67(m+1))^n+a1(67(m+1))^(n-1)+...+an=m/(m-30)*(a0(67m)^n+a1(67m)^(n-1)+...+an), -30a0/(m-30)*(67m)^n+a0C(n;1)(67m)^(n-1)+...+a0-30a1/(m-30)*(67m)^(n-1)+a0C(n-1;1)(67m)^(n-2)+...+a1+...-30an/(m-30)=0, -30a0*2010^n-30a1n2010^(n-1)-..-30an=0, 2010^n+a1/a0*2010^(n-1)+...+an/a0=0, a0=0, n:/2=>a(2k-1)=-a0,a2k=a0, n:2=>a(2k-1)=-a0,a(2k)=a0,an=0,
1
-
1
-
(2cos²x-5cosx+2)log11(-sinx)=0,{-sinx>0, sinx<0,хє(-π+2πn;2πn),[2cos²x-5cosx+2 =0,-sinx=1;[cosx=(5±√(25-4*2*2))/4,sinx =-1;[cosx=2,cosx=1/2,x=-π/2+2πn;[x=±π/3+2πn,x=-π/2+2πn;[x=-π/3+2πn,x=-π/2+ 2πn;
1
-
1
-
R,√(R²-4),R-√(R²-4),R+√(R²-4),(R+√(R²-4))² +(2R-2)²=4R²,R²+2R√(R²-4)+R²-4+4R²-8R+4-4R²=0,2R²-8R+2R√(R²-4)=0,R-4+√(R²-4)=0,√(R²-4)=-R+4,{R²-4=R²-8R+16,-R+4≥0;{8R-20=0,R≤4;R=2,5✓ S=(2*2,5)²=25
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
101 - простое, 10101 - 10101:3 - составное, 1010101/:2,:/3,:/5,:7=144300 (ост.1) :11=91827(ост.4),:13=77700(ост.1) :17=59417(ост.12):19=53163(ост.4)(10⁷-1)/9-(10⁵-1)/9+(10³-1)/9-(10²-1)/9+1 =(10⁷-10⁵+10³-10²)/9+1=10²(10⁵-10³+10- 1) /9+1:р=ост.0 10⁵-10³+10-1:р=ост.9(р-1) р=73, 27²*10-27*10+10-1=7290- 270+9=-10-51+9=-52=21=9*72=648=64 составное,
3n:3, то и всё число кратно 3, а так как оно всегда больше 3, то оно составн ое. А простые будут те, которые не делятся на все простые числа, меньших или равных корню из этого числа. А 101 однозначно входит в них.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
Х=(-а±√((а-2116)(а-1936)))/2+ 1012 а(-=;1936]U[2116;°) (a-2026)²-90²=n²,[{a=4052,n=2024;{a=2704,n=672;{a=2436,n=400;{a=2260,n=216;{a=2166,n=110;{a=2128,n=56;{a=2128,n=48;{a=2116,n=0;{a=2128,n=48;{a=2132,n=-56;{a=2166,n=-110;{a=2260,n=-216;{a=2436,n=-400;{a=2704,n=-672;{a=4052,n=-2024; 9×2=18
1
-
1
-
1
-
1
-
1
-
x²+(3x)²-2x*3xcos3a=x²*8,704 √8,704x arccos(1,1/√85) h=x/(ctg arccos(1,1/√85)+ctgarccos0,9)=x* 21√19/200 y=h/sinarccos0,9=x*2 1/20 h1=x√(83,79/85)sin(2arccos 0,9)/sin(arccos(1,1/√85)+2arccos 0,9)=63√19x/250 z=63√19x/250/sin(2arccos0,9)=7x/5✓ y/z=21/20 x/(7/5x)=3/4
1
-
1
-
1
-
4(-2+log2(log2(x))(3/4log2log2(x))-1)=1 3/4log²2log2(x))-log2log2(x))-1,5log2log2(x))+2=1/4,3/4log²2log2(x))-2,5log2log 2(x))+1,75=0 log2log2(x)=(2,5±√(2,5²-4 *3/4*1,75))/1,5[log2log2(x)=7/3, log2log2(x)=1;[log2(x)=2^(7/3),log2(x)=4;[x=2^2^(7/3),x=16; xN=>{16}
1
-
1
-
1
-
1
-
1
-
√(x³+17)=3x-5+√(x³+8),{x³+17=(3x-5)² +2(3x-5)√(x³+8)+x³+8,3x-5+√(x³+8)≥0;{(6x-10)√(x³+8)=-9x²+30x-16,√(x³+8)≥-3x+5;{36x⁵-201x⁴+640x³-900x²+544=0,(x-2/3)(х-8/3)/(х-5/3)≤0-*2/3+*5/3-*8/3 +>х; [{x≥3+(-9/2+√85/2)^(1/3)+(-4,5-√85/ 2)^(1/3), x≤5/3;x>5/3; 0,425✓{[х=1,26.., х=2,х=-0,625..,хє(-∞;2/3]U(5/3;8/ 3];хє[3+(-9/2+√85 /2)^(1/3)+(-4,5-√85/2)^ (1/3);∞);{[х=2,0/,0/,хє(5/3;8/3];{2}
1
-
1
-
1
-
1
-
1
-
2(135°-b)-180°-a+2b=180° a=-90° R=5/sin(a/2) (2Rcosb+20√2sin(-45°+0,5a+b))* 20√2sin(-45°+0,5a+b)=(2Rcos(135 °-b)+20√2sin(0,5a+b))*20√2sin(0, 5a+b) b=-0,5arccos((sin1,5a-sin0,5a+cos0,5a(1-2cosa))/√(-2cosa+3-4sin0,5a cosa))-arcsin(-√2cos(a/2+π/4)/√(- 2cosa+3-4sin0,5acosa))+π/2,(0;π/2) b=3/4π,a=3/4π R=5/sin67,5° S=25(2+√2)π
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
m=±√(√(1+80n)+n²)>n,n≥-1/80,n≥0 m=√ (√(1+80n)+n²)>n,n=0:m=1, n=1:m=√10,√ (1+80n)≥2n+1,1+80n≥4n²+4n+1,-4n²+76n≥0,n(n-19)≤0+*0-*19+>n,nє[0;19] n=2:m= √(√161+4), n=3:m=√(√241+9), n=4:m= √(√1281+16),n=19:m=20(1;0)(20;19)
1
-
1
-
1
-
1
-
1
-
2+1,5-1=2,5 √(4-h²)+√(2,25-h²)=2,5 4-h² =6,25-5√(2,25-h²)+2,25-h²,√(2,25-h²)=0,9 2,25-h²=0,81 h=√1,44=1,2 √(4-1,2²)=1,6 tg/_1=0,4/1,2=1/3,tg/_2=0,6/1,2=0,5 tg(/_1+/_2)=(1/3+1/2)/(1-1/3*1/2)=5/6/(5/ 6)=1 /_1+/_2=45°
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
|х-3|^(х2-х)=(х-3)²,{х-3≥0,(х-3)^(х²-х-2)=1,х-3=0,{х≥3,х-3=1,х2-х-2=0, {х=3;{х<3,(х-3)^(х²-х-2)(-1)^(х2-х)=1;[{х≥3,х=3,х=4,х=(1±√(1-4*-2))/2,{х<3, х=3,х=4,[х=2, х=-1,х-3=-1,х2-х-2:2;[{х=3,х=4;х=2,х=1,х=2,4-2-2=0:2✓;{3;4;2;1}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{(cosy-sinx+1)(tg²(x-π/3)+tg²(y+π/6))=0,(sinx-cosy)(2-sin2y+siny)=0;{[cosy=sinx-1;tg(x-π/3)=0,tg(y+π/6)=0,[sinx=cosy,{sin2y=1,siny=-1;{[y=±arccos(sinx-1)+2πr,x-π/3=πl,y+π/6=πp,[x=(π/2-y)(-1)^k+2k,π/2-y≥-π/2,≤π/2 {2y=π/2+2πn,y=-π/2+2πm,{[y=±arccos(sinx-1)+2πr,x=π/3+πl,y=-π/6+πp,[x=π/2-y+2πk,x=π/2+y+2πk,yє[0;π]{у=π/4+πn,y=-π/2+2πm;1+4n=-2+8πm,0/
{[-π/6+πp=±arccos(sin(π/3+πl)-1)+2πr, x=π/3+πl π/3+πl=π/2-y+2πk,yє[0;π],y=-π/6+πp,{-π/6=±arccos(√3/2-1)+π(2r-p), y=-π/6+π(l-2k),x=π/2+y+2πk,yє[0;π];
[{0/, x=π/3+2πk, π/6=y,0/,{0/, y=5π/6,x=8π/6+2πk;{π/3+2πk;π/6}{4π/3+2πk;5π/6}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(10t⁹f(x)-x¹⁰f'(t))/(9t⁸)=10/9xf(x)-1/ 9x²f'(x)=1 f(x)-0,1xf'(x)=0,9x-¹ f(x)=ce^(0,05x²)+0,45E(-0,05x²) (2-0,45E(-0,05))e-⁰,⁰⁵=c f(x)=(2-0,45E(-0,05))e-⁰,⁰⁵e^(0,05x²)+0,45E(-0,05x²)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
[{24≥b,24=c,a=24;{c≥12,a≥c,c<24,a=b;{a≥b,a<24,c=24;
{c>a≥b,c≥12,c<24;
{a≥b,c<12,a<c;
{a<24,a≥c≥24,b=24;{c≥12,b>a≥c,c<24;∞ решений
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
[√n+√(n+1)+√(n+2)]=[√(9n+8)]
{√n+√(n+1)+√(n+2)+1≥√(9n+8),√n+√(n+1)+√(n+2)-1≤√(9n+8);
√n(√(n+1)+√(n+2)+1)≤-√((n+1)(n+ 2))-√(n+1)-√(n+2)+3n+2× n=-0,778;-0,258;-0,888× n[m²/9-8/9;(m+1)²/9-8/9),√n+√(n+1)+√(n+2)[(√(m²-8)+√(m²+1)+√(m²+10))/3; (√((m+1)²-8)+√((m+1)²+1)+√((m+1)²+10))/3),m=3,75.. m=1,6*10²⁷;1,9*10²⁹;3,2*10²⁷ m=3,√n+√(n+1)+√(n+2)[2,8..;4,03..) n[0,16..;0,88..)U[(m²-8)/9~;(m+1)²/9 -8/9~)m≥4 √n+√(n+1)+√(n+2)[4,03..; 5 17/360)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(cosx-log(6)b)(cosx-3+3b)=0,xє[0;2π] 4 разл.корня b>0,[cosx=log6(b),cosx=3-3b;4 разл.корня log6(b)≤1,≥-1,[b≤6,b≥1/6;3- 3b≤1,≥-1,{b≥2/3,b≤4/3;bє[2/3;4/3] [х=±arc coslog6(b)+2πn,x=±arccos(3-3b)+2πn;{arccoslog6(2/3);2π-arccoslog6(2/3);0; 2π}{arccoslog6(4/3);2π-arccoslog6(4/3); π}bє[2/3;4/3),log(6)b=3-3b,/>\>b=1:0=0 bє[2/3;1)U(1;4/3)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(lnx+0,557)/(ln400000+0,557)=0,8, x=e^(-0,557+(ln400000+0,557)0,8)=4*⁰,⁸*10⁴*e^(0,557*(-0,2))=3+13/5/3⁴)*10⁴*e^(-0,1114)=3,03
*10⁴
2,6|81
243 0,03
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1/x(333/ln10-100x¹⁰⁰)=0 x=±(3,33/ln10)⁰,⁰¹°0+*->x max=3,33lg(3,33/ln10/e)=-3,33*0,..>-6,67 x=10^(n/100) 3,33n-10^n?-6,67 n=1;-2 x=10⁰,⁰¹;10-⁰,⁰²
1
-
1
-
1
-
1
-
log2(x)√((0,5log2(x)-1)/log2(x))≤1,[{log2(x)≥0,log²2(x)(0,5log2(x)-1)/log2(x) ≤1;{log2(x)<0,(0,5log2(x)-1)/log2(x)≥0;[{log2(x)≥0,(log2(x)+2)/log2(x)≥0+•-2 -°0+>log2(x){x<1,x>0,x≥4;[{log2(x)≥0,log 2(x)є(-∞;-2]U(0;∞);0/;{x≥1,x(0;1/4]U (1;∞);x(1;∞)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
y'(x)=e^(xy),xy=z,y+xy'=z',y'=z'/x-z/x² z'/x-z/x²=e^z,(e^-z)'+ze^-z/x=-x,-z'/z+1/x =0,-ln|z|+ln|x|=C,z=±x/e^C=cx,z=-1/x,z=cx -1/x,y=c-1/x²
1
-
X[0;3+√14),(x-1,5)⁴-18,5(x-1,5)²+76 9/16=0 (x-1,5)²=(18,5±6)/2=12,25; 6,25 x-1,5=±3,5;±2,5 x=5;-2;4;-1{5;4}
1
-
1
-
π-1=lnz+coslnz+sinlnz z=p(cosf+isinf) π-1=lnp+(coslnp+sin lnp)*chf+((coslnp-sinlnp)shf+1)i {π-1-lnp=(coslnp+sinlnp)√(1/(cos lnp-sinlnp)²+1),-1/(coslnp-sinlnp)= shf;(π-1-lnp)²(1-sin(2lnp))=(1+sin(2lnp))(2-2sin(2lnp)) lnp=-8,75;-5,5;-2,5;0,25;0,52,4;2,5;3,75;7;.. p=e^-8,75;e^-5,5;e^-2,5;e^0,25;e^0,5;e^2,4;e^2,5;e^3,75;e^7;.. f=-1/(cos 8,75+sin8,75);-1/(cos5,5+sin5,5);.. z=e^-8,75(cos(1/(cos8,75+sin8,7 5))+isin(-1/(cos8,75+sin8,75))); e^-5,5(cos(1/(cos5,5+sin5,5))+ isin(-1/(cos5,5+sin5,5));e^-2,5(..);..
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
f4(z)=4+3z+2z²+z³,(z+2/3)³+1 2/3(z+2/3)-8/27-10/9+4=0, z+2/3=(-2 16/27/2+√((1 8/27)²+(5/3)³/27))^(1/3)+(-35/27-√(1225/729+125/729))^(1/3),z=-2/3+(-35+15*2,45)^(1/3)/3+(-35-15*2,45)^(1/3)/3=-2/3+1,25/3-4,16/3=-0,75/3-1,38..=-1,63..<-1,
(z+2/3)²+((-35+√1350)^(1/3)/3+(-35-√1350)^(1/3)/3)(z+2/3)+((-35+15√6)^(1/3/3)+(-35-15√6)^(1/3)/3)²=0,z+2/3=(-(-35+15√6)^(1/3)/3-(-35-15√6)^(1/3)/3±√(((-35+15√6)^(1/3)/3+(-35-15√6)^(1/3)/3)²-4((-35+15√6)^(1/3)/3+(-35-15√6)^(1/3)/3)²))/2
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1/((1-cos36°)/2)+1/((1-cos108°)/2)=2/(0,25+0,25√5)+2/(1+2(0,25+0,25√5)²+1)=2(√5-1)+2/(2+6/8+2/8*√5)=2√5-2+2(2,75-0,25*√5)/(2,75²-0,25²*5)=2√5-2+4,5/116*16-0,5/116*16√5=-1 11/29+1 27/29√5
121/16-5/16=116/16
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
[x⁶+3,99x⁴+6,01x³+213,92x²-186,01x+859,94=0,x=1,3..,x=-2,3,x=1;{1;2,3;-1,3}
1
-
1
-
1
-
1
-
(24-((17,5^2-R^2)(-2,5^2+R^2))^0,5/R)/R x=2(-432+R^2+24((17,5^2-R^2)(-2,5^2+R^2))^0,5/R)^0,5,R[2,5;17,5]
1
-
1
-
1/x+1/√(13-x²)=5/6,xєIR, x≠0, 13-x²>0, (x-√13)(x+√13)<0, +_-√13*-_√13*+_>x xє(-√13;√13),x≠0,xє(-√13;0)U(0;√13) √(13-x²)+x=5/6*x√(13-x²), x²=(5/6*x-1)²(13-x²), x²-25/36*x²*13+25/36*x⁴+10/6*x*13-5/3*x³-13+x²=0,x⁴-12/5*x³-253*25*x²+13/5*12*x-468/25=0,(x²-1,39x-78,34*80,73)(x²-0,004x+0,000490)=0,x=80,73, x=-78,34,т.к.xє(-√13;0)U(0;√13), то 0/.
(6/5)²=36/25,-253*25-36/25=-6326,44
1265
506
6325+1,44=6326,44⁰,⁵=80-73,56/160=80-0,46=79,54 18/5/79,54=3,6/79,54=0,05, 0,05²=0,0025
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{a[0,975+0,5b;1,025+0,5b),a[19,95-2b;20,05-2b);{b<7,63,7,57>b;b<7,57 a[4,77;4,83) a+b[19,95-b;1,025+1,5b)=[12,36;12,44) (a+b)/(2a-b)(6,05;6,36]
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
y=±√(3(1-x²/16)) S(AB)=(yA+yB)/2*(xB-xA) S=(√(3(1-xA²/16))xB-+√(3 (1-xB²/16))xA-+√(3(1-xC²/16))xB±√ (3(1-xB²/16))xC-√(3(1-xA²/16))xC±√ (3(1-xC²/16))xA)/2,xB≥0,yB≥0,xA≤xC
S'(xA)=((1-xA²/16)-⁰,⁵xA/16(-xB+xC) ±√(1-xC²/16)-+√(1-xB²/16))√3/2=0
[xB=xC,xA=±√(8+0,5xBxC-+*±0,5√((16-xC²)(16-xB²)));+(-)*+(-)*-(+)>xA
√(4+0,25xBxC+xB+xC)-+*±√(4+0,25xBxC-xB-xC)
S=√3√(1-xB²/16)(|xB|+|xA|);√3(√(1- xA²/16)xB-+√(1-xB²/16)xA-+√(1-xC ²/16)xB±√(1-xB²/16)xC-√(1-xA²/16) xC±√(1-xC²/16)xA)/2
√3/8(1-xB²/16)-⁰,⁵(8-xB/2*xA-xB²)=0 xB=-xA/4+√(xA²+128)/4+*->xB
max=√3√(8-xA²/8+xA√(xA²+128)/8)(3xA+√(xA²+128))/16
64-4xA²×
S'=√3/32(8-xA²/8+xA√(xA²+128)/8)- ⁰,⁵(-xA²+64+(xA²+128)⁰,⁵xA)=0 xA=±4-*+>xA max=9✓
S=-(6√3,5+3√6-2√21-18)/8~1,08
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
0-3;3-5 6!/(6-5)!*2=120*6*2=720*2=1440
0,1,2,3,4,5:5!=120 1,2,3,3,4,5:3!*С(5;2)= 6*5!/2!/3!=6*20/2=60 1,2,3,4,5,0:5!=120 300
1
-
х=2+3(2+3х³)³/>/> 81(х³+2/3)³+х-2=0, 81*(х³+2/3)²*9х²+1=0,(х³+2/3)²х²=1/729,(х³+2/3)х=±1/27,[х⁴+2/3х-1/27=0,х⁴+2 /3х+1/27=0;[х=1/44,(х+1/132)³+1/2904 (х+1/132)+383'333/21296/27=0,х+1/132=(-383'333/21296/54+√(383'333²/2129 6²/54²+(1/2904)³/27))^(1/3)+(-383'333/21296/54-√(383'333²/26737² +1/2/121³)/432)^(1/3),х=-1/132+(-383'333/21296/54+√(383'333²/26737² +1/2/121³)/432)^(1/3)+(-383'333/21296/54-√(383'333²/26737² +1/2/121³)/432)^(1/3),-4/9(2/9)^(1/3) +1/27<0,х=-1/12,(х-1/36)³+1/216(Х-1/3 6)+7771/9/36²=0,х-1/36=(-7771/18/36²+√(7771²/18²/36⁴+(1/216)³/27))^(1/3)+(-7771/4-√60388443/4)^(1/3)/18, х=1/36+(-7771/4-√60388443/4)^(1/3)/18+(-7771/4+√60388443/4)^(1/3)/18
--1/32+...+*1/36+..--1/12+*1/44->х минимум=-81((-1/132+(-383'333/21296/54+√(383'333²/26737² +1/2/121³)/432)^(1/3)+(-383'333/21296/54-√(383'333²/26737² +1/2/121³)/432)^(1/3))³+2/3)³-1/132+(-383'333/21296/54+√(383'333²/26737² +1/2/121³)/432)^(1/3)+(-383'333/21296/54-√(383'333²/26737² +1/2/121³)/432)^(1/3)-2=663,..>0, максимум=-81((1/36+(-7771/4-√60388 443/4)^(1/3)/18+(-7771/4+√60388443/ 4)^(1/3)/18)³+2/3)³+1/36+(-7771/4-√60 388443/4)^(1/3)/18+(-7771/4+√60388 443/4)^(1/3)/18-2=-2,87..<0 минимум =-81(-1/12³+2/3)³-1/12-2=-26,...<0 макс имум=-81(1/44³+2/3)³+1/44-2=-25,97..<0,х=-0,84-2,87/665,87*0,55=-0,842..
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
К,У,Б,Л,И К*98=99Б+ЛИ0 Б≤7,Л≤7 К≥3 К=3,294=99Б+ЛИ0× К=4, 392=99Б+ЛИ0× К=5, 490=99Б+ЛИ0× К=6,Б=2 39=ЛИ, У=0,1,4,5,7,8✓ К=7,Б=4, 29=ЛИ У=0,1,3,5,6,8✓ К=8,Б=6,19=ЛИ У=0,2,3,4,5,7✓ К=9,Б=8 9=ЛИ×
396:6=66✓297:7=77× 198:8=88×
1
-
1
-
1
-
1
-
1
-
6arcsin(2/R)+6arcsin(1/R)=360°,arcsin (2/R)+arcsin(1/R)=60° 2/R*√(1-1/R²)+√(1 4/R²)*1/R=√3/2,4/R²(1-1/R²)+4/R²√(1-1/R²)√(1-4/R²)+(1-4/R²)/R²=3/4,√(1-1/R²) √(1-4/R²)=3/16R²-5/4+5/4/R² {R⁸-40/3R⁶ +86/3R⁴+160/3R²-656/9=0,(R²-(10+2√1 0)/3)(R²-(10-2√10)/3)≥0+**+>R² {[R²=4,0 17,R²=1,04,R²=10,00,R²=-1,737;-43 2/9?40 R²є(-∞;(10-2√10(/3]U[(10+2√10(/3;∞);[R²=10,R²=1,04,R²=-1,737;[R=√10,R=1,04, 0/;R>2,R=√10
S=0,5*4*√6*3+0,5*2√9*3=6√6+9~24
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
log5((3-x)(x²+2))≥log5(x²-7x+12)+log 5(5-x),{(3-x)(x²+2)>0,(x²-7x+12)>0,5-x>0;{x-3<0,(x-(7+√(49-4"12))/2)(x-(7-√1)/2)>0, +°3-°4+>x x<5;{x<3,хє(-∞;3)U(4;∞),x<5;х є(-∞;3).(-х+3)(х²+2)≥(х²-7х+12)*(х-5),-(х -3)(х²+2-(х-4)(х-5))≥0,(х-3)(х²+2-х²+5х+ 4х-20)≤0,(х-3)(9х-18)≤0,(х-3)(х-2)≤0 +*2*3+>х хє[2;3],хє[2;3)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
2023 окурка,674 сигареты и 1 окурок,675 окурков,225 сигарет, 225 окурков,75 сигарет,75 окурков,25 сигарет,25 окурков,8 сиг. и 1 оку.,9 оку.,3 сиг.,3 оку.,1 сиг., 1 оку. 674+225+75+25+8+3+ 1=1011✓
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{x=-y/2±√(39-3/4y²),z=-y/2±√(49 3/4y²),-+1,5y√(49-3/4y²)±*±√((39 3/4y²)(49-3/4y²))-+1,5y√(39-3/4y²)= 3/4y²-69,y[-2√13;2√13];27/8y⁴-160,5y²-2850-+3y(3/4y²-69)√(39-3/4y²)=±(±4,5y²√(39-3/4y²)+3y(3/4y²-69)) √(49-3/4y²) y=±5;±19√7/7;±7,2;±1,29 +;+=>(-7,5*11/2-7,5*9/2+99/4=-20 1/4)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
√х^log(2)√x≥2,√x>0,x>0.x^(0,25log(2)x)≥2,[{xє(0;1),0,25log(2)x≤log(x)2;(1){x>1,0,25log(2)≥log(x)2;(1):0,25log(2)x-1/log(2)x≤0,(log²(2)x-4)/log(2)x≤0,(log(2)x 2)(log(2)x+2)/log(2)x≤0*-2+ 0°-*+2>log (2)x log(2)xє(-∞;-2]U(0;2],хє(0;1/4]U(1;4][xє(0;1/4],{x>1,хє[1/4;1)U[4;+∞);[xє(0;1/4],хє[4;+∞);xє(0;1/4]U[4;+∞)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
sin(6x²/(x²-1))+sin((2x²-6x-2)/(x²-1))≥0,2 sin((4x²-3x-1)/(x-1)/(x+1))cos((2x²+3x+ 1)/(x-1)/(x+1))≥0,[{sin(4x²-3x-1)/(x-1)/(x+1))≥0,cos((2x²+3x+1)/(x-1)/(x+1))≥0;{sin(4x²-3x-1)/(x-1)/(x+1))≤0,cos((2x²+3x +1)/(x-1)/(x+1))≤0;[{n≥1,хє[(-4πn-2 π+2)/(4πn+2π-8);-1-1,5/(πn-2)],(2x²+3x+1)/(x-1)/(x+1)≥-π/2+2πn,(2x²+3x+1)/(x-1)/(x+1)≤π/2+2πn;{(4x²-3x-1)/(x-1)/(x+1)≥π+2πn,(4x²-3x-1)/(x-1)/(x+1)≤2π+2πn,(2x²+3x+1)/(x-1)/(x+1)≤1,5π+2πn,[n≤0 хє(-∞;-1) U(-1;1)U[(-4πn-π-2)/(-4πn-π+4);∞);n>0,х є(1;(-4πn-π-2)/(-4πn-π+4)]
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
0=42-х¹/⁴-14√х+х (z-7/3)³-175/12(z-7/3)-36'875/64/27=0 z-7/3=(295/2+√(295²-7³*128*2)/2)¹/³*5/12+(..-..)..=5/3*7⁰,⁵cos(1/3 arccos(295/112/√7)+2/3πn)
3,8/112<0,04 z=7/3+5/3*7⁰,⁵cos(1/3arccos (295/112/√7)+2/3πn) x¹/⁴=√(7/3+ 5/3*7⁰,⁵cos(1/3arccos(295/112/√7)))+√(7/3+5/3*7⁰,⁵cos(1/3arcco s(295/112/√7)+2/3π))+√(7/3+5/3* 7⁰,⁵cos(1/3arccos(295/112/√7)+4/ 3π))✓;-√-√+√×;-√+√-√×;√-√-√✓ x=(√(7/3+ 5/3*7⁰,⁵cos(1/3arccos(295/112/√7)))-√(7/3+5/3*7⁰,⁵cos(1/3arcco s(295/112/√7)+2/3π))-√(7/3+5/3* 7⁰,⁵cos(1/3arccos(295/112/√7)+4/ 3π)))⁴✓
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
8,9,2,7,4,3,4,7,2,9,
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
a=0,5arcsin0,6(-1)^n+πn/2 b=a-30°;150°-2πm=0,5arcsin0,6-π/6 +π(n-2m);0,5arcsin0,6-5/6π+π(n-2m);π/3-0,5arcsin0,6+π(n-2m);-π/3-0,5 arcsin0,6+π(n-2m) sin(a+b)=0,6;-0,3√3-0,4;0,4±0,3√3
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
AB,y=-x+2x0+5 AC,y=2x-2,5x1 -3=x0,1,2=x1 y=x+5,y=-x/2 x=-10/3,y=5/3,R=√170/3=√2|x-1|= √(5x²-6x+2) x=1±√85/3,y=-2-+√85/3 C,x=38/15; -4/3,y=2x-3=28/16;-17/3 BC=(-3418,75-+1585/4√85)/1596 (x-1-+√85/3)-2-+√85/3
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
$dx/sin³x/cos³x=$2/(t²+1)dt/(2t/(1+t²))³/((1-t²)/(1+t²))³=$2/8/t³/(1-t²)³(1+t²)⁵dt= $(1/4(-t+(-1-5t²+9t⁴-7t⁶+2t⁸)/t³/(t-1)³/(t+1)³)dt=1/4(-t²/2+$(A/t+B/t²+C/t³+D/(t-1)+E/(t-1)²+F/(t-1)³+G/(t+1)+H/(t+1)² +I/(t+1)³)dt=-t²/8+1/4(8lnt+t^-2/-2-5 15/16ln|t-1|+2 5/8(t-1)^-1/-1-5 13/24(t-1)^-2/-2-1/16ln|t+1|+3,25(t+1)^-1/-1-2 19/24(t+1)^-2/2)+C= -tg²0,5x/8+2ln|tg0,5x|-tg^-2 0,5x/8-95/64 ln|tg0,5x-1|-21/32(tg0,5x-1)^-1+133/24 (tg0,5x-1)^-2-1/64ln|tg0,5x+1|-0,8125 (tg0,5x+1)^-1-67/192(tg0,5x+1)^-2+C
-1-5t²+9t⁴-7t⁶+2t⁸=At²(t-1)³(t+1)³+Bt(t-1)³(t+1)³+C(t-1)³(t+1)³+Dt³(t-1)²(t+1)³+Et³(t-1)(t+1)³+Ft³(t+1)³+Gt³(t-1)³(t+1)²+Ht³(t -1)³(t+1)+It³(t-1)³=At⁸-2At⁶-At⁵+3At⁴-At²+Bt⁷-2Bt⁵-Bt⁴+3Bt³-Bt+Ct⁶-2Ct⁴-Ct³+3Ct²-C+Dt⁸+Dt⁷-2Dt⁶-2Dt⁵+Dt⁴+Dt³+Et⁷+2Et⁶-2Et⁴-Et³+Ft⁶+3Ft⁵+3Ft⁴+Ft³+Gt⁸-Gt⁷-2Gt⁶+2Gt⁵+Gt⁴-Gt³+Ht⁷-2Ht⁶+2Ht⁴-Ht³+It⁶-3It⁵+3It⁴-It³,{A+D+G=2,B+D+E-G+H=0,-2A+C-2D+2E+F-2G-2H+I=-7,-2B-A-2D+3F+2G-3I=0,3A-B-2C+D-2E+3F+G+2H+3I=9,3B-C+D-E-F-G-H-I=0,-A+3C=-5,-B=0,-C=-1;{A=8,B=0,C=1,D+ G=-6,D+E-G+H=0,-2D+2E+F-2G-2H+I=8,3F+2G-3I=8,D-2E+3F+G+2H+3I=-13,D-E-F-G-H-I=1;{A=8,B=0,C=1,D+ G=-6,-E+2G-H=-6,E+0,5F-H+0,5I=-2,3F+2G-3I=8,2E-3F-2H-3I=7,E+F+2G+H+I=-7;{A=8,B=0,C=1,D+G=-6,-E+2G-H=-6,0,5F+ 2G-2H+0,5I=-8,3F+2G-3I=8,-1,5F+2G-2H-1,5I=-2,5,F+4G+I=-13;{A=8,B=0,C=1,D+G=-6,-E+2G-H=-6,0,5F+ 2G-2H+0,5I=-8,1 2/3G-2H+I=-9 1/3, 2 2/3G-2 2/3H=-8 5/6,-2H=-6,5;{A=8,B=0,C=1,D=-5 15/16,E=-(-6+3,25-2 -1/16)=2,75-1/8=2 5/8,F=(-8-2-1/16+ 2*3,25+0,5*-2 19/24)/0,5=(-8+1/8+6 1/2-1 19/48)*2=(-7 7/8+5 5/48)2=-2 37/48*2=-4 37/24=-5 13/24, G=(-8 5/6+2 2/3*3,25)/2 2/3=(-53/6+8*13/12)/8*3=(-106+104)/12/8*3=-2/4/8=-1/16,H=3,25,I=-9 1/3-2/3 *-1/16+2*3,25=-9 1/3+1/24+6 1/2=-2 19/24;
(1/2sin2x)³=1/8(1-cos4x)/2*sin2x=(sin 2x-cos4xsin2x)/16
1
-
2x+0,5≥x⁶/2,2x-1,5≤0,5x⁶;{(x+0,25)(x-1,36) ≤0,(x-1)(x-0,83)≥0;{x[-0,25;1,36]x(-≠;0,83]U [1;≠);x[-0,25;0,83]U[1;1,36]
x[-0,5;0):&1=1/2x⁶ 0/,x[0;0,5),1=1/2x⁶,x= ±2¹/⁶ 0/ x[0,5;1)1+1/2x6,0/ x[1;1,5) 2=1/2 x⁶ x=±2¹/³ {2¹/³}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
X²+y²/a²=1,y=2ax-3a (2x-3)²+x⅔=1 5x²-12x+8=0 x=(12±4i)/10× y=-0,5/a(x-x0)+2ax0-3a (1+0,25/a⁴)x²-1/a² x((0,5/a²+2)x0-3)+(0,5a-²+2)²x0²-6 (0,5/a²+2)x0+8=0 x=x0+a²(-3±√(-(1+4a²)²x0²+4(3a²+12a⁴)x0-32a⁴+1))/(2a⁴+0,5) min=|a|√ (a²+0,25)|-3+√(-(1+4a²)²(x0-6a²/(1+ 4a²))²+4a⁴+1)|/2/(a⁴+0,25) x0[-1;1] -1,5/(1+4a²)+1,5≤1,5,≥0 x0[0;1] ±√(-1/4-3/8/(x0-1,5))=a≤√2/2
√(a⁴+0,25a²)(1,5/(a⁴+0,25)-(a⁴+0,2 5)-⁰,⁵) (a⁴+0,25a²)-⁰,⁵(-3a⁶-1,125a⁴+ 0,75a²+3/32+(-0,5a²+0,25a⁴-1/16)(a⁴+0,25)⁰,⁵)(a⁴+0,25)-²a=0 [a=0,{|a|≤√(-1/8+1/4√(19/3)cos(1/3arccos(-√(27/19³)))),(11a⁶+6,5a⁴-2,75a²-3/8)(13a⁶+2,5a⁴-3,25a²-3/8)=(0,5a⁴-a²-1/8)²;a=±√0,32*0+*√0,32->a min=0
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{(xy-1,5)³-3,75(xy-1,5)+393 3/4=0, x+y=1;xy=1,5+(-1575+110√205)¹/³/2+(..-..)..{y=1-x,x²-x+1,5+(-1575+110√205)¹/³/2+(..-..)..=0; x=0,5±√(-1,25+(1575-110√205)¹/³/2+(..+..)..),y=0,5-+√(-1,25+(1575-110 √205)¹/³/2+(..+..)..)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
Mare el Madonna,
era el consante
Sale el ciano, senpriano.
Donna bele mare,
Credere contare
Dame in momento
Kene qyache pyu.
Uno, uno, un momento,
Uno,uno,uno sentimento,
Uno,uno,uno secremento.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
[{a[58 2/13;72),x=-9/5+a/15;{a(-24;108/13],-a/17+27/17=x;{a[-27/8;10,8],x=27/7+a/7; {a[-21,6;-27/8],x=-1/9a+3;{a[10,8;18],x=9-a/3;{a[-24;-21,6],x=27+a;aU[27/13;3,375)U{5,4}
1
-
1
-
1
-
1
-
log²2|2x|-5log2|2x|+2|x|log2|2x|-4|x|+6≥0,{|2x|>0,x≠0.(log2|2x|-2,5+|x|)²-(|x|-0,5)²≤0,(log2|2x|-2)(log2|2x|-3+2|x|)≤0,+*-2-*-1+ *1 -2*+>x
log2|2x|-3+2|x|=0,-∞/> 1-3+2=0,log2(-2x) -3-2x=0,\>1-3+2=0,хє[-2;-1]U[1;2],x≠0,хє[-2;-1]U[1;2]
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x²=-0,5-(7(z-3)²-31)/2/(1+y²)≥0 7(z-3)²+y²≤30 z[1;5] z=1,y[-1;1],z=2,y[-4;4] z=3,y[-5;5],z=4,y[-4;4],z=5,y[-1;1] x=±1/2;±1 (±1;0;1)(±1;0;5) x=±√11,5(y=±0)× x=±√(-0,5+31/2)×
1
-
1
-
1
-
√5/2,√2/2 l=1/2+1=1,5 1+h, 2-h (2-h)/(1+ h)=1/2,-1,5h=-1,5,h=1 l1=√2,l2=1,5√2 S= 1/4+1²/2+1,5²/2+(1,5+1)/2*0,5=2,5
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(x-3)(log(6)(x²+3x-4)+log0,2(20-5x)+1/log(4-x)5+x+1)≥x²-x-6,{x²+3x-4>0,20-5x>0, 4-x>0,4-x≠1;{(x+4)(x-1)>0-4+°-°+1>x,x<4, x≠3;{хє(-∞;-4)U(1;+∞),хє(-∞;3)U(3;4);хє (-∞;-4)U(1;3)U(3;4).(x-3)(log(6)(x²+3x-4) +x)-(x-3)(x+2)≥0,(x-3)(log(6)(x²+3x-4)+x- x-2)≥0,(x-3)(log(6)(x²+3x-4)-2)≥0,log(6)(x²+3x-4)-2=0,x²+3x+4=36,x²+3x-32=0,x=(-3±√(9-4*32))/2[x=-1,5+√137/2,x=-1,5 √137/2;--1,5-√137/2+*3--1,5+√137/2+>x хє[-1,5-√137/2;3]U[-1,5+√137/2;+∞) хє[-1,5-√137/2;-4)U(1;3).
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
a,b,45-a-b
c,d,c+d-6
21-a-c,b+d-27,9-a-b+c+d
a=19,5
19,5;b;25,5-b
c;d;c+d-6
1,5-c;b+d-27;-10,5-b+c+d
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{х²+Ху+у²=529,х²+√3xz+z²=441,x²+y²=144;{х=-0,5y±√(-0,75у²+529), (-0,5y±√(-0,75 y²+529))²+√3(-0,5y±√(-0,75y²+529))z+z²=441, y⁴+144y²-385²=0;y=±(√(457/2)±√(3 13/2)){x=-+(0,5√228,5±0,5√156,5)±√(-+ 0,75√(457*313)+240,25),z=-0,5√3(-+(0,5 √228,5±0,5√156,5)±√(-+ 0,75√(457*313 )+240,25))±√(356,875±0,125√(457*313) +(0,25√228,5±0,25√156,5)√(-+0,75√(457*313)))
1
-
1
-
1
-
1
-
1
-
1
-
1
-
a,b,c,dєZ≥0 1/a+1/(a+b)+1/(a+b+c)+1/(a+b+c+d)=1≥4/(a+b+c+d),≤4/a,a+b+c +d≥4,a≤4,a≠0,a=1,1/1+1/(1+b)+1/(1+b+c)+1/(1+b+c+d)=1,1/(1+b)+1/(1+b+c)+1/(1+b+c+d)=0,0/,a=2,1/(2+b)+1/(2+b+c)+1/(2+b+c+d)=1/2,d=1/(0,5-1/(2+b)-1/(2+b+c))-2-b-c=(4+2b+2c+2b+b²+bc)/(2+b+c+0,5b²+0,5bc-2-b-c-2-b)-2-b-c=(4+4b+2c+b²+bc)/(0,5b²+0,5bc-2-b)-2-b-c,b≠ 0,c≠0,d≠0,(8+6b)/(0,5b²+0,5bc-2-b)-b-c, b=1,14/(0,5+0,5c-3)-1-c=14/(-2,5+0,5c)-1- c=28/(c-5)-1-c≥0,\>(28-c+5-c²+5c)/(c-5) =(-c²+4c+33)/(c-5)≥0,(c-(-4+√(16-4*1*3 3))/-2)(c-(2+√(16+132)/2))/(c-5)≤02-√ 37+*5-*2+√37+>c,cє(-∞;2-√37]U(5;2+√3 7) c=5,d=(-6²+4*6+33)/1=(-36+24+33)=- 12+33=21,(2;1;5;21)c=7,d=(-7²+4*7+33)/2=(-49-28 +33)/2=(-77+33)/2=-44/2=-22,c=8,d=(-8² +4*8+33)/(8-5)=(-64+32+33)/3=1/3,b=2,(8+6*2)/(0,5*2²+0,5*2c-2-2)-2-c=20/(c-2)-2-c\> (20-2c+4-c²+2c)/(c-2)≥0,(-c²+24)/(c-2)≥0,(c-√24)(c+√24)/(c-2)≤0--√24+*2-√24+ >c cє(-∞;-√24]U(2;√24] c=3,d=20/(3-2) 2-3=20-5=15,c=4,d=20/(4-2)-2-4=10-6=4 √24=4,.. (2;2;3;15)(2;2;4;4) b=3,(8+6*3)/(0,5*3²+0,5*3c-2-3)-3-c=26/(1,5c-0,5)-3-c ≥0,(26-4,5c+1,5-1,5c²+0,5c)/1,5/(c-1/3)=( 1,5c²-4c+27,5)/1,5/(c-1/3)≥0, (c-(4-√(16-4 *1,5*27,5))/-3)(c-(-4/3-√(16+6*27,5)/3)/(c-1/3)≤0,-5 64/78+*1/3-3 12/78+>c 4 38/78,cє(-∞;-5 32/39]U(1/3;3 6/39] c=1,d=26/1-3-1=22,(2;3;1;22) c=2,d=26/2, 5-3-2=52/5-5=5,4,c=3,d=26/(1,5*3-0,5)-3- 3=6,5-6є/Z b=4,(8+6*4)/(0,5*4²+0,5*4c-2- 4)-4-c=32/(2c+2)-4-c=(16-4c-4-c²-c)/(c+ 1)=(-c²-5c+12)/(c+1)≥0,(c-(5+√(25-41 12))/-2)(c-(-2,5+√(25+48)/2))/(c+1)≤0 +-2,5-√73/2+°-12,5+√73/2+>c,cє(-∞; -2,5-0,5√73]U(-1;-2,5+√73/2],cє[0;1],с=0, d=16/1-4-0=12,c=1,d=16/2-4-1=8-5=3,(2;4;0;12)(2;4;1;3) b=5,(8+6*5)/(0,5*5²+0,5*5c-2-5)-5-c=(38-12,5c-27,5-2,5c²-5,5c)/(2,5c+5,5)=(-2,5c²-18c+10,5)/2,5/(c+11/5)≥0 (c-(18+√(324-4-2,5*10, 5))/-5)(c-(-3,6+√(324+10*10,5)/5))/(c+2,2)≤0,+*-3,6-0,2√429+*-2,23,6+0,2√429+>C,cє(-∞;-3,6-0,2√429]U(-2,2;-3,6+0,2√429],cє{0},d=10,5/2,5/2,2=21/5/11*5э́/,а при b>5 решений уже нет Напоминаем, что а≤4.a=3,d=1/(2/3-1/(3+b)-1/(3+b+c))-3-b-c=(9+3b+3c+3b +b²+3c)/(2/3(3+b)(3+b+c)-3-b-c-3-b)-3 b-c=(9+6b+b²+3c)/(6+2b+2c+2b+2/3 b²+2/3bc-6-2b-c)-3-b-c=(9-1 2/3b²-5bc-2/ 3b³-2 2/3b²c-2/3bc²-c²)/(2/3b²+2/3b c+2b+c)≥0,b=0,d=(9-c²)/c≥0,(c-3)(c+3)/c≤0,--3+°0-3+>c cє(-∞;-3]U(0;3] c=1,d=8,(4;0;1;8)c=2,d=5/2є/Z,c=3,d=0,(4;0;3;0),b=1,(6 2/3-7 2/3c-1 2/3c²)/(2 2/3+1 2/3c)≥0,(c-(7 2/3+√((7 2/3)²-41 2/3*6 2/3))/2/-1 2/3)(c-(-23/10+√(529/9 +20*20/9)/2/5*3)/(c+2)≥0,-2,3-√929/ 10+-2-* 2,3+√929/10+>c cє(-∞;-2,3-√92 9/10]U(-2;-2,3+√929/10],cє[0] d=6 2/3/(2 2/3)=20/3/8*3=2,5 при b>1 промежуток для с уменьшается, а значит решений нет.a=4,d=1/(3/4-1/(4+b)-1/(4+b+c))-4-b -c=(16+4b+4c+4b+b²+4c)/(12+3b+3c+3 b+3/4b²+3/4bc-4-b-c-4-b)-4-b-c=(-18b²-8c-9bc-3/4b³-6/4b²c-4b²+4b-3/4bc²-2c²)/(3/4b²+3/4bc+4b+2c+4)≥0,b=0,(-8c-2c²)/(2c+4)=-2c(c+4)/2/(c+2)=-c(c+4)/(c+2)≥0+*-4*-2+*0->c,cє(-∞;-4]U(-2;0] c=0,d=0,(4;0;0;0) а больше решений нет.
1
-
1
-
1
-
1
-
1
-
рх-0,5х²-2х-6=-0,5(х-р+2)²+0,5р²-2р-4≤0,5р²-2р-4 мин(n)=En=1;n(0,5n²+7n+18,5)= n(1/6n²+3,75n+22 1/12)=159 (n+7,5)³-36,25(n+7,5)-1647 3/4=0 n=-7,5+(822 7/8+√(59170²-26866)/72)¹/³+(822 7/8-√(59170²-26'866)/72)¹/³~1,75
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(1-x/2)log(13-3*2^x)4≤1,{13-3*2^x>0,1 3-3*2^x≠1;{2^x<13/3,2^x≠4;{x<log(2)(13/3),x≠2;хє(-∞;2)U(2;log(2)13/3) (-x/2+1-log(4)(13-3*2^x))/log(4)(13-3*2^x)≤0, 1/2-1/(13-3*2^x)*-3*2^x*ln2/ln4=0,-1/2 +3/(13-3*2^x)*2^x/2=0,-6,5+1,5*2^x+1,5* 2^x=0,2^x=6,5/3,x=log(2)(13/6) +*->x max=-log(2)(13/6)/2+1-log(2)(√13/√2)= log(2)(2√12/13)<0,log(4)(13-3*2^x)≥0,13 3*2^x≥1,2^x≤4,x≤2, xє(-∞;2).
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
Gm1m3/r^2-Gm2m3/(R-r)^2=0, r^2=1/m2*m1*(R-r)^2, (1-m1/m2)*r^2+2m1/m2*Rr-m1/m2*R^2=0, r=(-2m1R/m2±√(4m1^2R^2/m2^2+4(1-m1/m2)m1/m2*R^2))/(2-2m1/m2)=R(-m1+√(m1^2+m1m2-m1^2m2^2))/(m2-m1)=15*10^7* (-300000+√(-300000^2+300000+300000^2))/-299999=(-300000+550)/-299999=15*10^7*299450/299999=149 726 718
(m1+0,5m2)^2>=m2^2(m1^2+0,25), m2>=m1/(-0,5+√(m1^2+0,25))=1/(-0,5+√1,25)=1/0,62=1,61
1
-
1
-
1
-
tga=10/h,tg(45°-a)=3/h,1=(10/h+3/h)/(1-10/h*3/h),1-30/h²=13/h,-30(1/h)²-13/h+1=0 1/h=(13±√(13²-4*30))/-60[1/h= 0,5 1/h=1/15;h=15
arctg7,5 BD=tg(arctg7,5-45°)*3=(7,5-1)/(1+7,5*1)*3=6,5/8,5*3=39/17
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
4||x|-1|=x+2,{x≥-2,[4(|x|-1)=x+2,4(|x|-1)=- x-2;{x≥-2,[{x≥-6,x=2,x=-1,2;{x≤2,x=2/5,x=- 2/3;{x≥-2,[x=2;-1,2;0,4;-2/3;{2;-1,2;0,4;-2/3}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{{y}+[z]=0,8,{z}+[x]=1,2,z+x+y=4,7;{y}[0;1) [z](-0,2;0,8]=0,{y}=0,8,{z}=0,2,[x]=1 z=0,2, {x}+[y]=2,7,{x}=0,7,[y]=2 (1,7;2,8;0,2)
1
-
2x(1-x²)/(1+x²)²=1/4,-2x³+2x=1/4(1+x²)²,- 1/4-1/2x²-1/4x⁴-2x³+2x=0,-0,25x⁴-2x³-0,5x²+2x-0,25=0,:-0,25x² x²+8x+2-8/x+1/x²=0, x-1/x=y,y²+2+8y+2=0,y²+8y+4=0,y=(-8± √(8²-4*4))/2=-4±√12 [x-1/x=-4+√12,x-1/x=-4-√12;[x²+(4-√12)x-1=0,x²+(4+√12)x-1 =0;[x=(-4+√12±√((4-√12)²-4*-1))/2,x=(-4-√ 12±√((4+√12)²-4*-1))/2;[x=-2+√3+√6-√2, x=-2+√3-√6+√2,x=-2-√3+√6+√2,x=-2-√3-√6-√2;{-2+√3+√6-√2;-2+√3-√6+√2;-2-√3+√ 6+√2;-2-√3-√6-√2}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
у=1-х, (х²+(1-х)²)²-2х²(1-х)²=7,
{х⁴+(1-х)⁴=7;(х²+(1-х)²-√2х(1-х))(х²+(1-х)²+√2х(1-х))=7,
((2+√2)х^2-(2+√2)х+1)((2-√2)х²+(-2+√2)х+1)=7, 2х⁴-4х³+6х²-4х-6=0,|:2 (х²-х)²+2(х²-х)-3=0,х2-х=(-2±√(4-4*(-3)))/2=-1±2, х²-х=1, х²-х=-3, х=(1±√(1-4(-1)))/2, х=0,5±0,5√5, х=(1±√(1-4*3))/2 -11<0,у=0,5-+0,5√5,
1
-
y=√(-x²+ax) y=√(-x2+2ax) [a=0,x=0; 2$(0;a)dx$(√(-x²+ax);√(-x²+2ax))(x²+y²)dy =2$(0;r)(r'cosф-rsinф)dф$(√(-r²cosф²+ar cosф);√(-r²cos²ф+2arcosф))r²(r'sinф+rcosф)dф=2$(0;a)((2x²/3+2ax/3)(-(x-a)²+a²) ⁰,⁵-(2/3x²+ax/3)√(-(x-a/2)²+a²/4))dx=-1/4 a⁴arcsin(-(x/a-1)²+1)⁰,⁵+1/3a²(-(x-a)²+a²) ⁰,⁵(x-a)-1/6(-(x-a)²+a²)⁰,⁵(x-a)³+a(-(x-a)²+ a²)¹,⁵/3-1/3a⁴arcsin((x-a)/a)-(x-a)a²(-(x-a) ²+a²)⁰,⁵/3-1/6√(-(x-0,5a)²+a²/4)(x-a/2)(2a- ¹(x-a/2)²-a/4)+3/32a³arcsin√(-(2x/a-1)²+ 1)-1/3a√(-(x-a/2)²+a²/4)(x-a/2)+1/96√(- (x-a/2)²+a²/4)³)|(0;a)*2=-1/6a⁴*π*2=-π/3a⁴
x=rcosф,у=rsinф r=аcosф r=2acosф (-(x/a-1)²+1)⁰,⁵=sinu x/a=1±cosu d(x/a)=-+sin udu √(-(2x/a-1)²+1)=sinu x=a/2(1±cosu) dx=-+a/2sinudu
1
-
1
-
1
-
1
-
1
-
Ps=бT⁴, T=3680K,Yє[380;760]нм,P's=C1*3y²e^(-C2y/T)+C1y³e^(-C2y/T)*(-C2/T)=0, 3-yC2/T=0,y=-3/(-C2)*T=c/л=cT/b,C2=3b/c=3*2,1*10-³/3/10⁸=2,1*10-¹¹K*c,+*- ,бТ⁴=$(0;∞)C1y³e^(-2,1*10-¹¹y/T)dy=C1y³e^(-2,1*10-¹¹y/T)/(-2,1*10-¹¹/T)|(0;∞)-C1*3y²e^(-2,1*10-¹¹y/T)/(-2,1*10-¹¹/T)|(0;∞)+6ye^(-2,1*10-¹¹y/T)|(0;∞)-6e^(-2,1*10-¹¹y/T)/(-2,1*10-¹¹y/T)|(0;∞)=0,
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
y=6x/(2x-1) P=4x+2x-²-6/x+2√6 x¹,⁵/√(2x-1)+3/(2x-1)+17 P'(x)=4-4x-³+6x-²+2√6x⁰,⁵(2x-1,5)/(2x-1)¹,⁵-6(2x-1)-²=0 0=4x¹⁰-8x⁹+44 1/4x⁸-120 5/8x⁷+124x⁶-52x⁵+8x⁴+ (5,5x³-10x²+5,5x-1)² x=-0,073;0,8403;1,2;0,7*-0,7*-0,8403*+*1,2+>x min=25,02
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
[х=а,х=1,5±√(-а²+4а+2,25);х≠±а
А≠0,а≠3,5,А≠0,5,2 решения а[-0,5;0)U(0;0,5)U(0,5;3,5)U(3,5;4,5] (а-2-√2)(а-2+√2)≤0,а[2-√2;2+√2] нечётное число корней а{-0,5}U{0}U{0,5}U(2-√2;2+√2)U{3,5}U{4,5}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
4500/11=409 1/11 1001,9999 8998/22+1=410 0..16 0;11 1+1=1+1,1+3=1+3,1+5=1+5=3+3,1+7=1+7=3+5,1+9=1+9=3+7=5+5,3+3=3+3,3+5=3+5,3+7=3+7=5+5,3+9=3+9=5+7,5+5=5+5,5+7=5+7,5+9=5+9=7+7,7+7=7+7,7+9=7+9,9+9=9+9 85{85}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(2+х)/(2-х)+√х=1+х,{х≥0,2-х≠0;{х≥0,х≠2;х є[0;2)U(2;+∞) 2+x+√x(2-x)=2-x+2x-x²,-(x- 2)√x=-x²,√x(x-2-x¹,⁵)=0,[x=0,(x⁰,⁵)³-(x⁰,⁵)²+ 2=0;(x⁰,⁵-1/3)³-1/3(x⁰,⁵-1/3)+1 25/27=0; x⁰,⁵-1/3=(-26/27+√(26²/27²+(-1/3)³/27)) ^(1/3)+(-26/27-√(676-1)/27)^(1/3)=(-26 +15√3)^(1/3)/3+(-26-15√3)^(1/3)/3= (√3-2)/3+(-√3-2)/3=-4/3,D>0=>1 корень х⁰,⁵=-1,0/{0}
1
-
$sinxdx/(1-cos²x)³=$du/(u²-1)³=$(A/(u-1)+B/(u-1)²+C/(u-1)³+D/(u+1)+E/(u+ 1)²+F/(u+1)³)du=0,5(u-1)^-2/-2-0,5(u+1) ^-2/-2+C=-0,25(cosx-1)^-2+0,25(cosx+1)^-2+C
cosx=u,-sinxdx=du 1=A(u-1)²(u+1)³+B(u -1)(u+1)³+C(u+1)³+D(u-1)³(u+1)²+E(u -1)³(u+1)+F(u-1)³=Au⁵+Au⁴-2Au³-2Au²+Au +A+Bu⁴+2Bu³-2Bu-B+Cu³+3Cu²+3Cu+C+Du⁵-Du⁴-2Du³+2Du²+Du-D+Eu⁴-2Eu³+2Eu-E+Fu³-3Fu²+3Fu-F,{A+D=0,A+B-D+E=0,-2 A+2B+C-2D-2E+F=0,-2A+3C+2D-3F=0,A-2B+3C+D+2E+3F=0,A-B+C-D-E-F=1;{A=-D,2A+B+E=0,2B+C-2E+F=0,-4A+3C-3F=0,*2-2B+3C+2E+3F=0,2A-B+C-E-F=1;{A=-D,2A+B+E=0,2B+C-2E+F=0,B+1,5C-1,5F+E=0,-2B+3C+2E+3F=0,2B-C+2E+F=-1;{D=0,A=0,B=0,F=-1/2,E=0,C=1/2;
1
-
1
-
F=3x²-2±4x√(1-x²) 6x+(4-8x²)(1-x²)-⁰,⁵=0 {-25/16(x²)²+25/16x²-0,25=0,x/(x-√0,5)/(x+√0,5)≥0-0,5⁰,⁵*+0*-0,5⁰,⁵*+>x;{[x²=1/5, x²=4/5; x[-0,5⁰,⁵;0]U[0,5⁰,⁵;∞);[x=-1/√5,x=2/√5;1/√5+*2/√5->x min=-3,max=2 6x-(4-8 x²)(1-x²)-⁰,⁵=0,x=1/√5;-2/√5 +-2/√5*1/√5 +>x max=2 min=-3 F[-3;2]
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
а, 37,5° atg37,5° 2atg37,5°/sin75° (2atg37,5°/sin75°-a)sin75°*(2(a-2atg37,5 °*ctg75°)+a(2tg37,5°/sin75°-1)cos75°)/2-arcsin((1-2tg37,5°ctg75°+2tg37,5°*ctg75°-cos75°)/(tg37,5°))a²tg²37,5°+a(1-cos75°)*√(a²tg²75°-(a-acos75°)²)/2=a²((2tg37,5°/(√2/4+√6/4)-1)(0,5*√2/2+√3/2*√2/2)*(2-4tg37,5 °*(√6/4-√2/4)/(√2/4+√6/4)+(2tg37,5°/(√2/4+√6/4)-1)(√6/4-1/4*√2)/2-5/12*πtg²37,5°+(1-√3/2*√2/2+1/2*√2/2)*√((1-cos150°)/2/(1+cos150°)*2-(1-√6/4+√2/4)²)/2)=a²((8√(15-8√3-6√6+10√2)(√6/4-√2/4)-1)(√2/4+√6/4)*(2-√(15-8√3-6√6+10√2)*(8-2√12)+(2√(15-8√3-6√6+10√2)(√6-√2)-1)(√6/8-√2/8)-5/12*π(15-8√3-6√6+10√2)+(0,5-√6/8+√2/8)*√(6,25+4,125√3+√6/4-√2/4))*(1+²)+a²...(1+²)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
4^(x-3)-2^(x-3)(16-x²)-16x²≥0,(2^x)²/64- 2^x(2-x²/8)-16x²≥0,(2^x-(-2+x²/8+√(4-x²/2+x⁴/64-4/64(-16x²)))/(1/32))(2^x-(-64 +4x²-32√(4-x²/2+x⁴/64+x²)))≥0,(2^x+64 4x²-32(2+x²/8))(2^x+64-4x²+64+4x²)≥0,(2^x-8x²)(2^x+128)≥0,(2^(x/2)-2√2x)(2^(x/2)+2√2x)≥0,-0,32+*0,4-*9,..+>x 2^(x/2)*0,5ln2-2√2=0, x=2log(2)(4√2/ln2)=2log(2)(5,64/0,69)=2 *log(2)8,2=6,.. 4√2/ln2-2√2*2(2,5-log(2)ln 2)=8,2-5,64*2,5+5,640,5=8,2-14,10-2,820=-5,9-2,82=-8,72<0 16√2-18√2=-2√2<0, 2⁵-2√2*10=32-20√2>0,-2³+2√2*6=(2^(6/2)*0,5ln2-2√2)(x-6),x=(-8+12√2)/(4ln2 2√2)+6=8,8/(4*0,69-2*1,4)+6=8,8/-0,06+ 6=-140 2/3, хє[-0,32;0,4]U[9,..;+∞)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
√(4х²-у²-6сх-су+2с²)+√(2х-у-2с)√(6-4х+3 с)+√(-8х²-4ху+(10с+12)х+(3с+6)у-3с²-6 с)=6,√((2х-2с-у)(2х-с+у))+√(-2(2х-2с-у)(2 х-1,5с-3))+√(-8(х+0,25у-5/8с-3/4)²+0,5(у ²+3с+6)²-4 3/8с²-16,5с-13,5)=6,{у≤2х-2 с,х≤3/4с+1,5;2х-с+у≥0,у≥-2х+с,4х-3с≥0,х≥ 3/4с,хє[3/4с;3/4с+1,5],уэ́[-2х+с;2х-2с]
1
-
1
-
По х:2Rsin(a/2)cos(90°+0,5a-arccos (3,5/R)),2Rsin(-a/2+arccos(3,5/R)) cos(90°-a/4-0,5arccos(3,5/R)).По у: 2Rsin(a/2)sin(90°+0,5a-arccos(3,5/R)),2Rsin(-a/2+arccos(3,5/R))sin(90 °-a/4-0,5arccos(3,5/R)). (√(36-4R²sin²(a/2)cos²(-0,5a+arcc os(3,5/R)))+√(36-4R²sin²(-a/2+arc cos(3,5/R))sin²(a/4+0,5arccos(3,5/R))))²=(2Rsin(-0,5a+arccos(3,5/R))(sin(a/2)+sin(a/4+0,5arccos(3,5/R)))+7)² R[4,83;6]S=4,83²/2π..18π
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
A²+b²-2abcos/_a=1 arcsin(bsin/_a)
180°-arcsin(bsin/_a),/_a 2/sin/_a=a/sin(arcsin(bsin/_a)-/_a)
|a²-b²+1|=b²-1,b≥1 a+b≥1,|a-b|≥1
[a²=2b²-2,a=0;a=√(2b²-2) 3/sin/_a= b/sin(arcsin(bsin/_a)-2/_a)
√((1+cos2/_a)/(-1/3cos2/_a+5/9)) =b [b=1,/_a=45°+90°n,πn=/_a×;[b=1,/_a=45°;/_a=±0,5arccos(-1/3)+ πn,(0;60°) /_a=0,5arccos(-1/3){45°;0,5arccos(-1/3)}
1
-
хє[2πn;π/2+2πn],neZ,
{sinx-cosx≥1,xe[π/2+2πn;π+2πn]neZ,
-sinx-cosx≥1,xe[π+2πn;3π/2+2πn],neZ,
-sinx+cosx≥1,xe[3π/2+2πn;2π+2πn],neZ,
хє[2πn;π/2+2πn],neZ,
{sin(x-π/4)≥1/√2,xe[π/2+2πn;π+2πn]neZ,
sin(x+π/4)≤-1/√2,xe[π+2πn;3π/2+2πn],neZ,
sin(x-π/4)≤-1/√2,xe[3π/2+2πn;2π+2πn],neZ;
xe[2πn;π)2+2πn],neZ,
x-π/4e[π/4+2πn;3π/4+2πn],neZ,
[π/2+2πn;π+2πn],neZ,
x+π/4e[-3π/4+2πn;-π/4+2πn],neZ,
[π+2πn;1,5π+2πn],neZ,
x-π/4e[-3π/4+2πn;-π/4+2πn],neZ,
[3π/2+2πn;2π+2πn],neZ,
xe[2πn;π/2+2πn],neZ,
xe[π/2+2πn;π+2πn],neZ,
xe[π+2πn;1,5π+2πn],neZ,
xe[3π/2+2πn;2π+2πn],neZ, xeIR
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
$dx/(x-1)^0,75/(x+2)^1,25=$±2(u⁴+2,25)^ -0,5/(1,5±√(u⁴+2,25))⁰,⁵du=±(1,5±√(u⁴+ 2,25)⁰,⁵/0,5*2+C=±4(2+x)⁰,⁵+C
(x-1)⁰,²⁵(x+2)⁰,²⁵=u,x²+x-2=u⁴,x=(-1±√(1-4(-2-u⁴)))/2=-1/2±√(9+4u⁴)/2 dx=±0,5*0,5(4 u⁴+9)^-0,5*16u³du
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
log(2-x)(a^(x+2)+2a^(1-x)+x-1)+log(2+x)(a^(-x+2)+2a^(1+x)-x-1)=2{2-x>0,2-x≠1,2+x>0,2+x≠1;{x<2,x≠1,x>-2,x≠-1;хє(-2;-1)U (-1;1)U(1;2)(a^2xa²+2a)/a^x≥2a√(2a) (a² +2a*a^2x)/a^x≥2a√(2a) {2a√(2a)-3>0;2a √(2a)-3>0;(2a)¹,⁵>3,2a>3^(2/3),a>0,5*3^ (2/3) ає[0,5;1]U[e;+∞)
1
-
1
-
1
-
1
-
1
-
(4x-|x-6|)(log(1/3)(x+4)+1)/(2^x²-2^|x|)≥0, {x+4>0,2^x²-2^|x|≠0;{x>-4,x²≠|x|;{x>-4,|x|(|x|-1)≠0;{x>-4,x≠0,x≠1,x≠-1;xє(-4;-1)U(-1; 0)U(0;1)U(1;+∞) [{x-6<0,(4x+x-6)((log(1/3)(x+4)+1)/2^x(2^x-1)≥0;{x≥6,(4x-x+6)(log(1/3)(x+4)+1)/2^x/(2^x-1)≥0;[{x<6,(x-6/5)log(1/3)(x/3+4/3)/2^x/(2^x-1)≥0,--1 0-*1,2+>x{x≥6,(x+2)log(1/3)(x/3+4/3)/2^x/(2^x-1)≥0 +*-2*-1+°0->x;[{x<6,хє(0;1,2];{х≥6,хє(-∞; -2]U[-1;0);[хє(0;1,2],0/;хє(0;1,2]=>хє(0;1) U(1;1,2]
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
√((х+1)²+(у-2)²)<2, √((х-2)²+(у-6)²) Макс.(х+1)²+(у-2)²<4,хє(-3;1)у<√(-х²-2х+3)+2,у>-√(-х²-2х+3)+2,√(х²-4х+3+(√(-х²-2х+3)+2-6)²), х²-4х+3-х²-2х+3+16-8√(-х²-2х+3)=-6х+22-8√(-х²-2х+3),-6-8*0,5(-х²-2х+3)^(-0,5)*(-2х-2)=0, (х+1)²/(-х²-2х+3)=(3/4)²,х≥-1,х²+2х+1=-9/16х²-9/8х+27/16, 25/16х²+3 1/8х-13/16=0, х=(-25/8±√(625/64-4*25/16(-13/16)))/(25/8)=-1±√(625+25*13)/25, х=-1±0,2√38,хє(-1;1)х=-1+0,2√38,√(-1+0,2√38-2)²+(-√(-(-1+0,2√38)²-2(-1+0,2√38)+3)+2-6)²)=√(9+0,04*38-1,2√38-(1+0,04*38-0,4√38)+2-0,4√38+3+16+8√2,48)=√(29-1,2√38+1,6√62)
25
*13
75
25
325
+625
950=2*5²*19
24
45
120
96
1,080-0,36=0,720
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
0,01,0,99*0,02,..,0,99*0,98*..*(1-(n-1)/100)*n/100,.. 99!/(100-n)!*n*0,01^n
99!(100-n)!-¹(50(n-100)-¹-nln(100-n)+ 1,5+n*ln0,01)0,01^n=0->n max=99!/90!*10-¹⁹ Ответ:10-й.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
mtg(πk/n)+lsin(pπ/n)=√n,k,p,n€N,m,l€Q,m,l>0,0/<πk/n,πp/n<π/2,(mtg(π(k-1)/n)+mtgπ/n+lsinpπ/n(1-tg(π(k-1)/ntgπ/n))/(1-tg(π(k-1)/n)tgπ/n)=√n,1<k<artg(√n+l)/m/π*n+1,А n наверное, может быть любое и можно подобрать другие параметры.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
log2(3/x+2)-log2(x+3)≤log2((x+4)/x²){3/x+2>0,x+3>0,(x+4)/x²>0;{(x+1,5)/x>0 +°-1,5-°+0>x,x> 3,хє(-4;0)U(0;∞);{хє(-∞; -1,5)U(0;∞),хє(-3;0)U(0;∞);хє(-3;-1,5)U(0;∞).log2((2x+3)/x/(x+3)/(x+4)*x²)≤0, (2x+3)/(x+3)/(x+4)*x≤1,(2x²+3x-(x+3)(x+4))/(x+3)/(x+4)≤0,(x²-4x-12)/(x+3)/(x+4)≤0,(x-6)(x+2)/(x+3)/(x+4)≤0 +°-4-°-3+*-2*6+>x хє(-4;-3)U[-2;6],хє [-2;-1,5)U(0;6]
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
Х=а+7;2-а -х²+10х-а²>0 (а+1-√11,5)(1+а+√11,5(<0 а(-1-√11,5;-1+√11,5) (а+1,5-√10,25)(3/2+а+√10,25)<0 а(-1,5-√10,25;-1,5+√10,25) 0,75¿(≤)√10,25,а(-1,5-√10,25;-1+√11,25)
1
-
1
-
1
-
1
-
1
-
N/11=a²+b²+c², N=-abc-, a≠0, 100a+10b+c=11(a2+b2+c²), 11a²+100a+10b+c-11b²-11c²=0, a=(-100±√(100²-4(-11)(10b+c-11b²-11c ²)))/-22=4 6/11±√(2500+110b+11c-121b ²-121c²)/11≥1,≤9 [√(2500+110b+11c-121b ²-121c²)≥-39,≤ 49, -√(2500+110b+11c-121b ²-121c²)≥ 39,≤49, [2500+110b+11c-121b ²-121c²≤ 49²,≥0, 2500+110b+11c-121b ²-121c²≤ 39²,≥0, [{-121b²+110b+11c-121c²+99≤0, 121b²+110b+11c-121c²+2500≥0, {-121b ²+110b+11c-121c²+11*89≤0, -121b²+110 b+11c-121c²+2500≥0; [{(b-(-110+√(110²-4*(-121)(11c-121c²+ 99)))/-242)(b-(-110-√(110²+484*11c-484 11c²+484*99))/-242)≥0,++>b(b-(-110-√(110²+484*11c-484*11c²+484*2500))/-242)(b-(5/11-√(110²+5324c-532 4c²+1210000)/242))≤0,++>b {(b-(-110-√(110²+484*11c-484*11c²+484*979))/-242)(b-(5/11-√(25+11c-11c²+97 9)/11))≥0 ++>b (b-(-110-√(110²+484*11c-484*11c²+484*2500))/-242)(b-(5/11-√(25+11c-11c²+25 00)/22)≤0,+-*+>b
[{bє(-∞;110/242-√(110²+484*11c-484 *11c²+484*99))/242]U[110/242+√(11 0²+484*11c-484 *11c²+484*99))/242;+ ∞),*5/11-√(25+111c-11c²+2500)/11✓*5/11-√(25+111c-11c²+99)/11*5/11+√(25+111c-11c²+99)/11
✓*5/11+√(25+111c-11c²+2500)/11>b
bє[5/11-√(110²+5324c-532 4c²+121000 0)/242;5/11+√(110²+5324c-5324c²+121 0000)/242],
{bє(-∞;5/11-√(25+11c-11c²+979)/11]U[5/ 11+√(25+11c-11c²+97 9)/11;+∞),*5/11-√(25+11c-11c²+2500)/11✓*5/11-√(25+11c-11c²+979)/11*5/11+√(25+11c-11c²+979)/11
✓*5/11+√(25+11c-11c²+2500)/11>b
bє[5/11-√(25+11c-11c²+25 00)/q1;5/11+√(25+11c-11c²+25 00)/11],
[bє[5/11-√(25+11c-11c²+2500)/11;5/11-√(25+11c-11c²+99)/11]U[5/11+√(25+11c-11c²+99)/11
;5/11+√(25+11c-11c²+2500)/11],
bє[5/11-√(25+11c-11c²+2500)/11;5/11-√(25+11c-11c²+979)/11]U[5/11+√(25+11c-11c²+979)/11
;5/11+√(25+11c-11c²+2500)/11];*\/*/*/*\/ bє[5/11-√(25+11c-11c²+2500)/11;5/11-√(25+11c-11c²+99)/11]U[5/11+√(25+11c-11c²+99)/11;5/11+√(25+11c-11c²+2500)/11] с=0,bє[5/11-√2525/11;5/11-√124/11]U[5/11+√124/11;5/11+√2525/11], bє[2;5], а=4 6/11±√(10000+440*2+44*0-484*2²)/22=4 6/11±√(10880-1936)/22=4 6/11±√ 8944/22=4 6/11±2*√2236/22= 4 6/11±4 √559/22є/N, a=4 6/11±√(10000+440*3- 484*3²)/22=4 6/11±√6964/22=4 6/11± 83 75/166/22є/N, Чтобы а было натуральным числом, надо чтобы под корнем был квадрат целого числа, которое при делении на 11 даёт остаток 6, 5. a=4 6/11±√(10000+440*4- 484*4²)/22=4 6/11±√(11760-7744)/22=4 6/11±√4016/22=4 6/11±2*√1004/22є/N,
a=4 6/11±√(10000+440*5-484*5²)/22=4 6/11±√(10000+2200-12100)/22=4 6/11± √0100/22, a=5,a=4 1/11, 550,-11(c-0,5)²+ 2,75+2525≤2527,75 b max=5/11+√2527 ,75/11=5,..,b min 5/11-√2527,75/11=-4,.. c=1,bє[5/11-√(25+2500)/11;5/11-√(25+99)/11]U[5/11+√(25+99)/11;5/11+√(25+2500)/11],bє[2;5],b=2, a=4 6/11±√(10000+440*2+44*1-484*2²-484*1²)/22=4 6/11±√(10000+880+44-1936- 484)/22=4 6/11±√8424/22=4 6/11±2√21 06/22=4 6/11±(45-10/90)/11є/N,b=3,a=4 6/11±√(10000+440*3+44*1-484*3²-484*1²)/22=4 6/11±√(10000+1320+44-4356- 484)/22=4 6/11±√6524/22=4 6/11±80 124/160/22є/N, b=4,a=4 6/11±√(1000 0+440*4+44*1-484*4²-484*1²)/22=4 6/11±√(10000+1760+44-7744-484)/22= 4 6/11±√3576/22=4 6/11±(60-24/120)/22є/N, b=5, a=4 6/11±√(10000+440*5+ 44*1-484*5²-484*1²)/22=4 6/11±√(100 00+2200+44-12100-484)/22=4 6/11±√ (-19660)/22є/N, c=2, bє[5/11-√(25+11*2-11*2²+2500)/11;5/11-√(25+11*2-11*2²+99)/11]U[5/11+√(25+11*2-11*2²+99)/11;5/11+√(25+11*2-11*2²+2500)/11], 5/11+√(2525+11с-11с²)/11>=5, 11с²+11с+2525≥50², -11с²+11с+25≥0, (с-(-11-√(121-4*(-11)*25))/-22)(с-(-11+√(121+1100))/-22)≤0, +*+>с сє[0,5-√1221/22;0,5+√1221/22], сє[0;2] bє[5/11-√2503/11;5/11-√102/11]U[5/11+√102/11;5/11+√2503/11],bє[2;5], b=2, a=4 6/11±√(10000+440*2+ 44*2-484*2 ²-484*2²)/22=4 6/11±√(10000+880+88 -1936-1936)/22=4 6/11±√709 6/22=4 6/11±2√1774/22=4 6/11±42 10/84/11є/N, b=3, a=4 6/11±√(1000 0+440*3+44*2-484*3²-484*2²)/22=4 6/11±√(10000+1320+88-4356-1936)/22 =4 6/11±√5116/22=4 6/11±71 75/142 /22є/N,b=4, a=4 6/11±√(10000+440*4+ 44*2-484*4²-484*2²)/22=4 6/11±√(1000 0+1760+88-7744-1936)/22=4 6/11±√21 68/22=4 6/11±(46 52/92)/22є/N,b=5,a=4 6/11±√(10000+440*5+44*2-484*5²-484 2²)/22=4 6/11±√(10000+2200+88-12100 -1936)/22=4 6/11±√-1748/22є/N, c=3, bє[5/11-√(25+11*3-11*3²+2500)/11;5/11-√(25+11*3-11*3²+99)/11]U[5/11+√(25+11*3-11*3²+99)/11;5/11+√(25+11*3-11*3²+2500)/11], bє[5/11+√48/11;5/11+√2459/11], bє[2;4], решений нет, при с≥4, решений нет.
2025+91=2116 1680+84=1764
484
*16
2904
484
7744
4356 1320
1
-
1
-
1
-
1
-
1
-
$ctg⁷xdx=$-cos⁷x/(1-cos²x)⁴dcosx=$-y⁷/(y²-1)⁴dy=$(A/(y-1)+A1/(y-1)²+A2/(y-1)³ +A3/(y-1)⁴+A4/(y+1)+A5/(y+1)²+A6/(y+ 1)³+A7/(y+1)⁴)dy
A(y⁷+y⁶-3y⁵-3y⁴+3y³+3y²-y-1)+A1(y⁶+2y⁵-y⁴-4y³-y²+2y+1)+A2(y⁵+3y⁴+2y³-2y²-3y-1)+A3(y⁴+4y³+6y²+4y+1)+A4(y⁷-y⁶-3y⁵+3y⁴+3y³-3y²-y+1)+A5(y⁶-2y⁵-y⁴+4y³-y²-2y+1)+A6(y⁵-3y⁴+2y³+2y²-3y+1)+A7(y⁴-4y³+6y²-4y+1)=-y⁷,{A+A4=-1,-A1+2A4-A5=1,1/2A2+2A4- 2A5+1/2A6=-1/2,-1/6A3+1 1/3A4-1,5A6 -1/6A7=1/6,2/3A4+1/3A5-1,5A6-1/3A7=13/24, 1/3A5+2 7/36A6-1/4A7=34/72, 503/180A6-23/60A7=59/360, A7=-7697/5186;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
|х-1|-|х|+|2х+3|=2х+4,[{х≥1,х-1-х+2х+3=2х +4;{хє[0;1),-х+1-х+2х+3=2х+4;{хє[-1,5;0),- х+1+х+2х+3=2х+4;{х<-1,5,-х+1+х-2х-3=2х +4;[{х≥1,0=2;{хє[0;1),-2х=0;{хє[-1,5;0),0=0;{х<-1,5,-4х=6;[0/,х=0,хє[-1,5;0),0/;хє[-1,5;0]
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(|х|-|4-|у||-4)²≤4 {|х|-|4-|у||-4≤2,|х|-|4-|у||-4≥-2;{|х|-|4-|у||≤6,|х|-|4-|у||≥2; {[{х-|4-у|≤6,х≥0,у≥0;{х-|4+у|<6,х≥0,у<0;{-х-|4-у|≤6,х<0,у≥0;{-х-|4+у|≤6,х<0,у<0;[{х-|4-у|≥2,х≥0,у≥0;{х-|4+у|≥2,х≥0,у<0;{-х-|4-у|≥2,х<0,у≥0;{-х-|4+у|≥2,х<0,у<0;{[{4-у≤-6+х,4-у≥6-х,х≥0,у≥0;{4+у≥-6+х,4+у≤6-х,х≥0,у<0;{4-у≥-6-х,4-у≤6+х,х<0,у≥0;{4+у≥-х-6,4+у≤х+6,х<0,у<0;[{4-у≤-2+х,4-у≥2-х,х≥0,у≥0;{4+у≤-2+х,4+у≥2-х,х≥0,у<0;{4-у≤-2-х,4-у≥2+х,х<0,у≥0;{4+у≤-2-х,4+у≥2+х,х<0,у<0;
{[{у≤10-х,у≥-2+х,х≥0,у≥0;{у≥-10+х,у≤2-х,х≥0,у<0;{у≤10+х,у≥-2-х,х<0,у≥0;{у≥-х-10,у≤х+2,х<0,у<0;[{у≥6-х,у≤2+х,х≥0,у≥0;{у≤-6+х,у≥-2-х,х≥0,у<0;{у≥6+х,у≤2-х,х<0,у≥0;{у≤-6-х,у≥-2+х,х<0,у<0;
1
-
1
-
1
-
1
-
1
-
1
-
(π1/2)^2/2-(-1/4+π*0,5^2/4*2)-0,5*0,5^2*arccos0,3/0,5-(0,5*0,5^2*sin(180°-arccos0,6)-(1/2*arcsin 0,8-0,5*0,8))=π/8+1/4-π/8-1/8*arccos0,6-0,125√(1-0,6^2)+0,5arcsin0,8-0,40=-0,25+0,375arcsin0,8
(1-√(1-x^2))^2+(x-1/2)^2=1/4, 1-2√(1-x^2)+1-x^2+x^2-x+1/4-1/4=0, -2√(1-x^2)=x-2,4-4x^2=x^2-4x+4, -5x^2+4x=0, x=0, x=-4/-5=0,8,
1
-
1
-
1
-
1
-
1
-
1
-
{1/r=a/b,a=b+√(1+r²);{a=b/r,b/r=b+√(1+r ²);b=r√(1+r²)/(1-r) r²(1+r²)/(1-r)²+(1+r²)/(r-1)²=(2r)²,(1+r²)(r²+1)=4r²(r-1)²,{r²+1=2r² -2r,r²+1=-2r²+2r;{-r²+2r+1=0,3r²-2r+1=0;{r= (-2±√(4-4*-1))/-2,r=(2±√(4-4*3))/6;{r=1± √2,r=1/3±√-2/3;1-r>0,r<1,r=1-√2
1
-
1
-
tg/_B=3/4,tg0,5/_B=r/BA1,tg/_B=2tg0,5/_B/(1-tg²0,5/_B),3/4-3/4tg²/_0,5B=2tg0, 5/_B -3/4tg20,5/_B-2tg0,5/_B+3/4=0,tg0 ,5/_B=(2±√(4-4*-3/4*3/4))/(-3/2)[tg0,5/_B =-3,tg0,5/_B=1/3;tg0,5B>0 tg0,5B=1/3, 1/3=r/BA1,BA1=3r r+2r+3r=12,r=2
1
-
1
-
1
-
1
-
√(x²+b²)=3,x+1=b x²+(x+1)²=9,2x²+2x-8 =0,x=(-2±√(4-4*2*-8))/4[x=-1/2+√17/2,x= -0,5-√17/2;x>0 x=-0,5+√17/2 b=0,5+√17/ 2 (-0,5+√17/2)(0,5+√17/2)=-0,25+17/4=4
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1+log√2√(x+4)+log0,5(13-x)/(|x²+2x-3|-|2x²-10x+8|)≥0
{x+4≥0, x+4>0,13-x>0,|x²+2x-3|-|2x²-10x +8|≠0;{x>-4,x<13,|x²+2x-3|≠|2x²-10x+8|;{xє(-4;13),х²+2х-3≠2х²-10х+8,х²+2х-3≠-2х²+10х-8;{xє(-4;13),-х²+12х-11≠0,3х²-8х+ 5≠0;{хє(-4;13),х≠(-12±√(144-4*1*-11))/-2, х≠(8±√(64-4*3*5))/6;{хє(-4;13),х≠1,х≠11, х≠5/3,х≠1;хє(-4;1)U(1;1 2/3)U(1 2/3;11)U (11;13) (1+log2(x+4)-log2(13-x))/(|x²+2x-3|-|2x²-10x+8|)≥0,log(2)(2(x+4)/(13-x))/|(x-1)(x+3)|-2|(x-1)(x-4)|)≥0, -4**1+*1 2/3+*11->x
2*5 2/3/(11 1/3)=10 4/3/(11 1/3)=1 xє(1;1 2/3)U(1 2/3;11)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
y"-5y'+6y=x²+x,k²-5k+6=0,k=(5±√(25-4*6))/2[k=3,k=2;y0=c1e^2x+c2e^3x,yp=a0x²+a 1x+a2,2a0-5(2a0x+a1)+6(a0x²+a1x+a2)=x²+x,{6a0=1,-10a0+6a1=1,2a0-5a1+6a2 =0;{a0=1/6,a1=4/9,a2=17/54;yp=1/6x²+ 4/9x+17/54,y=c1e^2x+c2e^3x+1/6x²+4 /9x+17/54
1
-
1
-
1
-
1
-
(x²+y²)(x+y-3)=2xy≤x²+y² x+y-3≤1 y≤4-x (0;3)(0;0)(3;0) {x+y=a,xy=b; (a-1)³+(-2b-3)(a-1)+2b-2=0 a-1=(-b+1+√((b-1)²+(-2b-3)³/27))¹/³+(-b+1-2√2√(-b(b²+1,125b+13,5))/3/√3)¹/³ D>0,b<0 D=0,b=0 уже рассматривал, D<0,b>0.0 a,b=(1+(2+√(10 7/27))¹/³+(2-√(107/27))¹/³;-1)
2 71/81 a-1=-2b+2,(a-1)²+(-2b+2)(a-1)+4b² -10b+1=0×(1;1)(4;4) [{y=1-x,-1+x-x²=0;{y=4-x,-4+4x-x²=0;x=2 y=2 {(0!0)(0;3)(3;0)(2;2)}
1
-
1
-
1
-
1
-
{y=e^(2|x|),{x≠0,y≠0,a≠0, (|x|⁴+2a|x|²)e^(4|x|)=2-2a²; (4x⁴+4x³+8ax²+4ax)e^(4x)=0 x(x³+x²+2ax+a)=0[x=0,(x+1/3)³+(2a-1/3) (x+1/3)+1 2/3a-4/27=0;x=-1/3+(-5/6a+ 2/27+√(216a3+398,25a²-72a+3)/27)¹/³+(-5 /6a+2/27-√(216a³+398,25a²-72a+3)/27)¹/³ +0**+>x 0=2-2a²=>a=±1 ((-1/3+(-5/6a+2/27+√(216a3+398,25a²-72a+3)/27)¹/³+(-5/6a+2/27-√(216a³+398,25a²-7 2a+3)/27)¹/³)⁴+2a(-1/3+(-5/6a+2/27+√(2 16a3+398,25a²-72a+3)/27)¹/³+(-5/6a+2/ 27-√(216a³+398,25a²-72a+3)/27)¹/³)²)e^ (-4/3+4(-5/6a+2/27+√(216a3+398,25a² 72a+3)/27)¹/³+4(-5/6a+2/27-√(216a³+39 8,25a²-72a+3)/27)¹/³)=2-2a² -1/3+(-5/6a+ 2/27+√(216a3+398,25a²-72a+3)/27)¹/³+(-5/6a+2/27-√(216a³+398,25a²-72a+3)/27)¹/³<0 (-22,5a+2+√(216a3+398,25a²-7 2a+3))¹/³+(-22,5a+2-√(216a³+398,25a²-7 2a+3))¹/³<1 а<0,095
1
-
{(x²/³+y²/³)²-2x²/³y²/³=17,(x²/³+y²/³)((x²/³+y²/³)²-3x²/³y²/³)=65;{x²/³+y²/³=a,x²/³y²/³=y;{b=0,5a²-17/2,a³-51a+130=0;a=(-65+√(65²-17³))¹/³+(..-..)..=2√17cos (1/3arccos(-65/17/√17)+2/3πn), b=34cos²(1/3arccos(-65/17/√17)+ 2/3πn)-8,5{y=±(√17cos(1/3arcco s(-65/17/√17)+2/3πn)-+√(-8,5cos (2/3arccos(-65/17/√17)+4/3πn))) ¹,⁵, x=±(√17cos(1/3arccos(-65/17/√17)+2/3πn)±√(-8,5cos(2/3arcco s(-65/17/√17)+4/3πn)))¹,⁵,n=0;2.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{a<3log(3)x,ax≥9,|x-9|+|x-27|≤18; ОДЗ:x>0,{{a<3log(3)x,a≥9,[{x-9+x-27≤18,х≥27,{х-9-х+27≤18,хє[9;27){-х+9-х+27≤18;х<9;{9<3log(3)x,a≥9,[{2x≤54,х≥27,{18≤18,хє[9;27){-2х≤-18;х<9;{3³<x,a≥9,[x=27,[9;27)0/;{а≥9,х>27,хє[9;2 7] 0/
1
-
log(1/7)log3((|-x+1|+|x+1|)/(2x+1))≥0, 0<log3((|-x+1|+|x+1|)/(2x+1))≤1,{(|-x+1|+|x+1|)/(2x+1)≤3,(|-x+1|+|x+1|)/(2x+1)>1; +;-1+;+*1-;+>x [{(x-1+x+1)/(2x+1)≤3,(x-1|x+1)/(2x+1)>1,x≥1,{(-x+1+x+1)/(2x+1)≤3,(-x+1+x+1)/(2x+1)>1,xє[-1;1){(-x+1-x-1)/(2x+1)≤3,(-x+1-x-1)/(2x+1)>1,х<-1;[{2х/2/(x+0,5)-3≤0,2x/2/(x+0,5)-1>0,x≥1,{2/2/(x+1/2)≤3,2/2/(x+0,5)-1>0,xє[-1;1){-2х/(2x+1)-3≤0,-2х/(2x+1)-1>0,х<-1;[{(х-3х-1,5)/(x+0,5)≤0,(x-х-0,5)/(x+0,5)>0,x≥1,{(1-3х-1,5)/(x+1/2)≤0,(1-х-0,5)/(x+0,5)>0,xє[-1;1){(-х-3х-3/2)/(x+0,5)≤0,(-х-х-0,5)/(x+1/2)>0,х<-1;[{(х+0,75)/(x+0,5)≥0,+-°+>х x+0,5<0,x≥1,{(х+1/6)/(x+1/2)≥0,+°*+>х(х-0,5)/(x+0,5)<0,+°-*+>хxє[-1;1){(х+3/8)/(x+0,5)≥0,+°-*+>х,(х+0,25)/(x+1/2)<0,+°-*+>хх<-1;[{хє(-∞;-0,75]U(-0,5;+∞),x<-0,5,x≥1,{xє(-∞;-0,5)U[-1/6;+∞)xє(-0,5;0,5)xє[-1;1){хє(-∞;-0,5)U[-3/8;+∞),xє(-0,5;-0,25),х<-1;[0/,хє[-1/6;0,5),0/, хє[-1/6;+0,5)
1
-
54^х√3^((5х-10)/(х+2))/√(2х+9)≤81*2^х*(2х+9)^-0,5/3^((х-2)/(х+2)),2^х3^(3х)*3^((2,5х-5)/(х+2))/√(2х+9)-81*2^х/√(2х+9)3^(-(х-2)/(х+2))≤0,2^х*3^(-(х-2)/(х+2))(3^(3х+3,5 (х-2)/(х+2))-81)/√(2х+9)≤0, {3^((3х²+6х+3,5х-7)/(х+2))-81≤0,2х+9>0;{(3х²+9,5х-7)/(х+2)≤4, х>-4,5;{(3х²+9,5х-7-4х-8)/(х+2)≤0(1),х>-4,5;(1) (3х²+5,5х-15)/(х+2)≤0,(х-(-5,5+√(5,5²-4*3 15))/6)(х-(-11/12-√(30,25+120 30)/6)/(х+2)≤0,-11/12-√180,25+*2-*-11/12+√180,25/6+>х хє(-∞;-11/12-√180,25/6]U(-2;-11/12+√180,25/6],x>-4,5 xє(-4,5;-11/12-√180,25/6]U (-2;-11/12+√180,25/6]
180,25=13,..2 1/6\2+11/12=2 13/12, 2 1/6\2-11/12=1 3/12
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
X+y+1=xy,-xy+x+y+1=0, -x(y-1)+y-1=-2, (y-1)(-x+1)=-2,{y-1=1,-x+1=-2;{y-1=2,-x+1 =1;{y-1=-1,-x+1=2;{y-1=-2,-x+1=1; {y=2,x=3;{y=3,x=0;{y=0,x=-1;{y=-1,x=0;(2;3)(3;2)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
a+c+d-e-h
a,b,c,d
e,a-d+e+f-g
h,f,g,a+b+c+d-f-g-h
b+c+d-e-f a+c-g=h
a+b+c+d=22
4
1,2,7,12 e=11
11,5 f=8
5,8,3,6 g=3
2 Можно, только не получилось.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
[х+1/2]=1/2х⁶-[х] 1/2х⁶єZ x:2,x=2n [2n+1/2]=1/2(2n)⁶-[2n] 2n-32n⁶+2n=0, 32n(n⁵-1/8)=0, n=0, n=1/8^(0,2) {x}є[0;0,5) 2[х]-0,5х⁶=0,≤2х-0,5х⁶,>2(х-1)-0, 5х⁶ {-0,5х(х⁵-4)≥0,*+*4⁰,²->х-0,5х⁶-2х-2<0;{хє(-∞;0]U[4⁰,²;+∞),x⁶+4x+4>0;{хє(-∞;0]U[4⁰,²;+∞),xєR, xє[m;m+0,5)U[4⁰,²;1,5)U[m;m+0,5),х=4^(1/6)
6х⁵+4=0,х=(-4/6)^(1/5)=-(2/3)⁰,² 2/3(2/3) ⁰,²-4*(2/3)⁰,²+4=-3 1/3(2/3)⁰,²+4>0
1
-
1
-
1
-
1
-
1
-
1
-
(y+x)dy-(y-x)dx=0,y+x=u,y'+1=u',u(u'-1)dx-(u-2x)dx=0,uu'-2u+2x=0,u0u0'-2u0=0,u0'-2=0,u0=2x+c,up=kx+b,(kx+b)k-2(kx+b)+2x =0,x(k²-2k+2)+bk-2b=0,{k²-2k+2=0,bk-2b =0;{k=1±√-1,[b=0,k=2;{k=1±√-1,b=0;u=2x+ c+(1±√-1)x y=(2±√-1)x+c
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
√3*5 √3*6 r/sin30°=10/sina=x/sin(180°-30°-a) r/sin30°=12/sinb=x/sin(180°-30-b) a=arcsin(5/r)(-1)^n+πn 2r=x/sin(150°-a)=x/(0,5cosa+√3/2*sina) =x/(±0,5√(1-25/r²)+√3/2*5/r),x=±√(r²-25)+5√3 b=arcsin(6/r)(-1)^n+πn 2r=x/sin(150°-b)=(±√(r²-25) +5√3)/(0,5cosb+√3/2*sinb)=(±√(r²-25) +5√3)/(±0,5√(1-36/r²)+√3/2*6/r) ±√(r²-36)+6√3=±√(r²-25)+5√3, ±√(r²-36)-+√(r²-25)=-√3, r>0,r≥6 r²-36±2√(r²-36)(r2-25)+r2-25=3, ±2√(r²-36)(r²-25)=-2r²+64≤-8 4(r⁴-25r²-36r²+900)=4r⁴-256r²+64², r²=a, 4a²-244a+3600-4a²+256a-64²=0, 12a=-3600+3600+480+16, a=496/12=41 1/3 r=√41 1/3
1
-
1
-
1
-
1
-
гл(а)(а).. Нет б,е,и,й,к,п,р,с,т,у,ф,ы. Гладь!
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
2/(x-1)=3/(4-x) 8-2x=3x-3,2,2=x S∆=(2+3)/2*3-0,5*1,2*2-0,5*1,8*3= 7,5-1,2-2,7=3,6 S(1,8;6) 1,8*6²=64,8(4)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{PQ²+PS²-PQPS=100,1,3(PQ²-PS²+100)/(26PQ-10PS)=cos/_1; S=π(2,06PQ²+100±PQ√(100-3/4P Q²)-1,6PQ²(PQ/2±√(100-3/4PQ²))* 1,3(1,5PQ-+√(100-3/4PQ²)))/(10,5PQ-+5√(100-3/4PQ²)))/4/(1-1,3²PQ²(1,5PQ-+√(100-3/4PQ²)) ²/4/(10,5PQ-+5√(100-3/4PQ²))²)
1
-
1
-
75°,h=2,5√6-2,5√2,a=2,5√2+2,5√6 60°,(x; x√3) 2,5√6-2,5√2+√3x=2,5√6+2,5√2-x x= 2,5(√6-√2) S=25/2+37,5=50
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1+2^х+2^(2х+1)=у², х,уєZ [у>1, у<-1; (1+2^х*0,5)²+2^(2х)*1,75=у², х<0, ((2^(-х)+0,5)²+1,75)/2^(-2х)\>1, при х=0, 4=у², у=±2, ((2^(-х)+0,5)²+1,75)/2^(-2х) будет равняться (1;4), а на этом промежутке квадратов целых чисел нет. х=1, 1+2+ 2³=11, у=+√11, х=2, 1+2²+2⁵=5+32=37, у= ±√37, х=3, 1+2³+2⁷=9+128=137, у=±√137, 1+2^х+2^(2х+1)-1-2^х1-2^(2х1+1)=у²-у1²>0, 2^х1(2^(х-х1)+2^(2х+1-х1)-1-2^(х1+1)) =(у-у1)(у+у1),:/2,:4, х1≥2, потому что скобка не кратна 2, а значит взаимно проста со степенью, НОД(у1,(у-у1)/2)=1, иначе решений нет. 1+2+8=11 равноостаточно с простым числом, а квадрат целого числа не может давать остаток как у 11 при делении на простое число:11:3=3(ост.2)х=3, 0^2=0,1²=1,2²==1, короче говоря, при х>0 решений нет.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
log(1/3)(x²-3x-1)+log(1/3)(2x²-3x-2)≤log (1/3)(x²-2x-1)²+log3(4)-2,{-log(3)(x²-3x-1) log(3)(2x²-3x-2)+log(3)(x²-2x-1)²-log3(4) +2≤0,(x-(3+√13)/2)(x-(3-√13)/2)>0,+(3 √13)/2°-(3+√13)/2°+>x(x-2)(x+0,5)>0, -0,5+°-°+2>x x≠1±√2;{log3((x²-2x-1)²/(x²-3x-1)/(2x²-3x-2)/4*3²)≤0,хє(-∞;(3-√ 13)/2)U((3+√13)/2;∞),хє(-∞;-0,5)U(2;∞), x≠1±√2;{9(x²-2x-1)²/(x²-3x-1)/(2x²-3x-2)/4≤1,хє(-∞;-0,5)U((3+√13)/2;∞);{(x⁴-2x² +1)/(x-(3+√13)/2)/(x-(3-√13)/2)/(x-2)/(x+0,5)≤0, хє(-∞;-0,5)U((3+√13)/2;∞);{(x-1)²(X+1)²/(x-(3+√13)/2)/(x-(3-√13)/2)/(x-2)/(x+0,5)≤0,+*-1+°-0,5-°(3-√13)/2+*1+°2-°(3+√13)/2+>x хє(-∞;-0,5)U((3+ √13)/2;∞);{хє{-1}U(-0,5;(3-√13)/2)U{1}U (2;(3+√13)/2),хє(-∞;-0,5)U((3-√13)/2;∞);хє{-1}U{1}U(2;(3+√13)/2)
1
-
1
-
{(х+у)(х²+у²)=65,(х-у)(х²-у²)=5;{х³+ху²+х² у+у³=65,х³-ху²-х²у+у³=5;{х³+у³=35,ху²+х²у =30;{(х+у)(х²-ху+у²)=35,Ху(х+у)=30;{(х+у) ³=125,Ху(х+у)=30;{х+у=5,Ху=6;{у=5-х,5х -х²=6;-х²+5х-6=0,х=(-6±√(25-4*-1*-6))/-2,[х=2,х=3;[у=3,у=2;
1
-
L^-1{1/s⁴/(s-1)}=-1-1/6t³+e^t
A/s+B/s²+C/s³+D/s⁴+E/(s-1)=1/s⁴/(s-1),A s3(s-1)+Bs²(s-1)+Cs(s-1)+D(s-1)+Es⁴=1,As⁴-As+Bs³-Bs²+Cs²-Cs+Ds-D+Es⁴=1,{A+E =0,B=0,-B+C=0,-A-C+D=0,-D=1;{A+E=0,B= 0,C=0,-C+D+E=0,D=-1;{A=-1,B=0,C=0,E=1, D=-1;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{7,5ar+(a-r)a√(r²-20,25)=√(28²-a²)(7,5(a-r)-r√(r²-4,5²)),0=(-52r/615√ (r²-20,25)+(a-r)(4r²+534)/615)(7,5ar +(a-r)a√(r²-20,25))/(7,5(a-r)-r√(r²-20, 25))+(154/615r²-112/615ar)√(r²-20, 25)-534/615ar+8/615r⁴-4ar³/615-16 2/615r²,b=√(28²-a²);
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(х²+3х-k/2-4,5)²+(3,5k+13,5)x-0,25k²-4,5k -84,25=0 -0,5k-4,5>9/4,k<-13,5 min=-0,25 k²-8,75k-104,5=-0,25(k+17,5)²-31,4375<0 решений 2,k=-13,5:(x+1,5)⁴-2,5*13,5x-3 5,4375=0 50,625-35,4375>0,0/ k>-13,5: \*/-1,5*\-1,5+√(0,5k+6,75)*/min:0?(k²-10 k+706)²+k40*1379+3⁴*1873-4*353²≥241'125+81*1873>0 1400,5+1,1875²-13,5√ 6,75>0,38,8125²-104,5+13,5√6,75>0 0/ k<3 6/7,
1
-
1
-
1
-
1
-
1
-
1
-
(арс)(акр)(арс)(ак)(кс) Нет а,в,д,е,и,л,м,н,о,п,т,у.Арракс?
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(х+0,5-√(9-(у-1,5)²))(х+0,5+√(-(у-3/2)²+ 9))>0,+°-°+>х,хє(-∞;-0,5-√(9-(у-1,5)²))U (-0,5+√(9-(у-1,5)²);∞),ує[-1,5;4,5],хєR,ує(-∞;-1,5)U(4,5;∞)
1
-
{y=(26-x^(2x))^(0,5/x),x^(2(26-x^(2 x))^(0,5/x))+(26-x^(2x))^((26-x^(2x)) ^(0,5/x)/x)=5,x^(x+(26-x^(2x))^(0,5/x))+(26-x^(2x))^((x+(26-x^(2x))^(0, 5/x))/2/x)=7;{x=2,1322,y=0,9349; 2,9601~✓
1
-
x²+y²=1,(2x+y+1)/(3x+y+5) (2x+√(1-x²)+1)/(3x+√(1-x²)+5)'=((2+0,5(1-x²)-⁰,⁵*2x)(3x+√(1-x²)+5)-(2x+√(1-x²)+1)(3-x(1-x²) ⁰,⁵)/(3x+√(1-x²)+5)²=0 7(1-x²)⁰,⁵=2x+3,49 {(1-x²)=4x²+12x+9,x≥-1,5;-5x²-12x-8=0, x= 1,2±√-216/10 0/,+>x ...[-1/2;3/8],(2x-√(1 -x²)+1)/(3x-√(1-x²)+5)'=((2-0,5(1-x²)-⁰,⁵*-2 x)(3x-√(1-x²)+5)-(2x-√(1-x²)+1)(3+x(1-x²) ⁰,⁵)/(3x+√(1-x²)+5)²=0 (1-x²)⁰,⁵=-1/7-4x/7 {1-x²=1/49+8/49x+16/49x²,x≤-1/4;-1 16/4 9x²-8/49x+48/49=0 x=(-4±56)/65[x=4/5, x=-12/13;-*-12/13+*4/5+>x min=-8/11 [-8/11;3/8]
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{x=a±√(-(y+2a)²+(1+a)²),x²+y²+4(x-y)a=4+4a-7a²;-0,24/a-0,16±√(-0,81-1,08a+22,14a²+ 27a³+99/4a⁴)/5/a=y;a>0,x=+,y>1,125a-1/4- 3/8/a x=a±√(-(2a-0,24/a-0,16±√(-0,81-1,0 8a+22,14a²+27a³+99/4a⁴)/5/a)²+(1+a)²)
9*123876/121²/25²-12288/1331/25a+(a²+6/11a+903/121/25)²≥0 +*-0,18*0,19 +>а ає(-∞;-0,18]U[0,19!∞){-0,18;0,19}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
y^(1/(y+2))=x^(1/x²) e^(lny/(y+2))(1/y/(y+ 2)-lny(y+2)-²)=0 1+2/y-lny=0 y=4,3+*->y max=4,3^(1/6,3) e^(lnx/x²)(1-2lnx)x-³=0 x=e^0,5(•->x max=e^(0,5/e) 4,3^(1/6,3) >e^(0,5/e) y=1,x=1; y=2,x=2;(-2;-2){(1;1)(2;2)(&2;-2)}
1
-
1
-
$√2/2(-cos(π/4-x)+1,5/cos(π/4-x))/cos³x dx=-0,5tgx-3$1/(cos2x+1)/cos2xdx+1,5 ln|u-√0,5|+1,5ln|u+√0,5|-3ln|u|+0,75u-²+u ²/2=-0,5tgx-3ctg(x-π/4)/2/cos2x-3/8sin ²(x-π/4)+3/4ln|cos(x-π/4)|-3/4ln|sin(x-π/4)|+1,5ln|cosx-√0,5|+1,5ln|cosx+√0,5|-3ln|cosx|+1,25/cos²x+c
cosx=u x=±arccosu dx=-+1/√(1-u²)du
0,75=A(u⁴+√0,5u³)+B(u⁴-√0,5u³)+C(u⁴-0,5 u²)+D(u³-0,5u)+E(u²-0,5){B=1,5,A=1,5, C=- 3,D=0,E=-1,5;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x=3(3+1)+1...=3^n+3^(n-1)+...+1=(3^(n+1)-1)/(3-1)=0,5*3^(n+1)-0,5, 2^nf(1/(0,5*3^(n+1)-0,5))=1-0,5(1-f(1/(0,5*3^(n+1)-0,5)), f(1/(0,5*3^(n+1)-0,5))=0,5/(2^n-0,5),f(x)=0,5/(2^(log(3)((1/x+0,5)/,05)-1)-0,5)=1/(2^(log(3)(2/x+1))-1)
1
-
1
-
1
-
1
-
y=(x²+2x-4/5)²+2x+44/25 \*1 3/5/-1* \*-2/5/ y=kx+b,(x²+2x-4/5)²+(2-k)x+44/25 -b=0 k<0,9+5/8b,k>13/25+b, k<-2,4+2,5b b<1 1/75, b>1 71/75,k<23/15 $(x⁴+4x³+ 12/5x²+(-6/5-k)x+12/5-b)dx=x⁵/5+x⁴+4/5 x³+(-3/5-0,5k)x²+(12/5-b)x+c,x=±√(12/5 -2(6/5b-6/5k+(2-k)²/8-396/125)^(1/3))/2 ±√(2(6/5b-6/5k+(2-k)²/8-396/125)^(1/3) +24/5±(4-2k)/√(12/5-2(6/5b-6/5k+(2-k)²/8-396/125)^(1/3)))/2-1+i(±√(12/5 -2(6/5b-6/5k+(2-k)²/8-396/125)^(1/3))/2 ±√(2(6/5b-6/5k+(2-k)²/8-396/125)^(1/3) +24/5±(4-2k)/√(12/5-2(6/5b-6/5k+(2-k)²/8-396/125)^(1/3)))/2-1),где -b+k+102/2 5=0,x=±√(-2(b-k-102/25)/3/(-3/5b+3/5k+ (2-k)²/16+√((b-k-102)³/27+(6/5b-6/5k -(2-k)²/8-396/125)²/4)+198/125)^(1/3)+ 2(-3/5b+3/5k+(2-k)²/16+√((b-k-102)³/27+(6/5b-6/5k-(2-k)²/8-396/125)²/4)+19 8/125))^(1/3)+12/5)/2.... S=(x2⁵-x1⁵)/5+(x2⁴-x1⁴)+4/5(x2³-x1³)+(-3/5-0,5k)(x2² x1²)+(12/5-b)(x2-x1) S=(x3⁵-x2⁵)/10+(x3⁴- x2⁴)/2+2/5(x3³-x2³)+(-3/10-0,25k)(x3²-x2 ²)+(6/5-0,5b)(x3-x2) S=(x4⁵-x3⁵)/5+(x4⁴-x 3⁴)+4/5(x4³-x3³)+(-3/5-0,5k)(x4²-x3²)+(1 2/5-b)(x4-x3) k=23/13,b=3
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
X1=x2+x3,х-1+х-2+х3=-b, x1x2+x1x3+x2x3=c, x1x2x3=-d,x1=-b/2, b²/4+x2x3=c, x2x3=-d/-b*2, c-b²/4=2d/b, -x2²-b/2*x2+b2/4-c=0, x2=(0,5b+√(0,25b²-4(-1)(b²/4-c)))/(-2), x3=-025+0,5√(1,25b²-4c),
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
..ур(п)(п) Нет а,б,в,д,з,е,и,к,л,м,н,о, с,т,ь,я.ЫЭЮ шуруп?
1
-
1
-
1
-
|2x-1|+|2x+1|+4/√3*|y|=4, -1/2 0 1/2
2x-1+2x+1+4y/√3=4,{y=-√3x+√3,
x>=1/2,y≥0, {x>=1/2,y≥0,
2x-1+2x+1-4y/√3=4, y=√3x-√3,
x>=1/2,y≤0, {x>=1/2,y<0,
-2x+1+2x+1+4y/√3=4,{y=0,5√3,
1/2>x>=-1/2,y≥0, {0,5>x>-1/2,y≥0,
-2x+1+2x+1-4y/√3=4,{y=-0,5√3,
1/2>x>=-1/2,y≤0, { 0,5>x>-0,5,y≥0,
-2x+1-2x-1+4y/√3=4,{y=√3x+√3,
x<-1/2,y≥0, {x<-0,5,y≥0,
-2x+1-2x-1-4y/√3=4,{ y=-√3x-√3,
x<-1/2,y<0, { x<-1/2,y<0,
/-|^y\_>x
\___/
√3*1+√3*(1-0,5)*0,5*2=√3+0,5√3=1,5√3
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x¹/³=u x=u³ dz=3u²du $(0;∞)3u³/(1+u²)/(u²-√3u+1)/(u²+√3u+1)du=-0,5ln|1+u²|+0,25ln|u²-√3u+1|+0,25√3arctg((u-√3/2)/0,5)/0,5+0,25ln|u²+√3u+1|-0,25√3arctg ((u+√3/2)/0,5)/0,5(0;∞)=-∞+∞+∞+√3* π/3=-∞
3u³=A(2u⁵-2u³+2u)+B(u⁴-u²+1)+C(2u⁵+√3 u⁴+u³-u-√3)+D(u⁴+√3u³+2u²+√3u+1)+E (2u⁵-√3u⁴+u³-u+√3)+F(u⁴-√3u³+2u²-√3u+1) {A=-0,5, B=0, C=0,25,D=0,25√3, E=0,25, F=-0,25√3;
1
-
1
-
1
-
1
-
$r²dp4/3πR³=4/3πp$r²*3R²dR==4/3*3r⁵/5*π=4/5*πpR⁵=3/5mR², (0,6mR²-0,6mR²)2π/24/60²sin23,5°*2π/24/60²cos23,5°=M1, 0,6mR²*2π/24/60²cos23,5°+(0,6mR²-0,6mR²)2π/24/60²sin23,5°*0=M2, 0,6mR²2π/24/60²sin23,5°+(0,6mR²-0,6mR²)*0*2π/24/60²cos23,5°=M3, M1=0,M2=0,000014πcos23,5°mR²,M3=1,4*10^(-5)πsin23,5°mR²,
1
-
1
-
c=√(d²+16-8√(d²-h²)),h=d√(1/2±d/32√(32-d²)),d[√(-8+√(32h²+64));√(8-√(64-16h²))]U[√(8+4√(4-h²));√(16+h²)],d≥√(-8+√(32h²+64)) h²<16 4√2/3?h d≥4,-✓ +✓,4√((1+2√21/9) ¹/³+(..-..)..)≥d √(c²+36-12c*√(1-h²/c²)) (2+d(√(1/4+|d²/64-1/4|)-+√(1/ 4-|d²/64-1/4|))/√(d²+4+2d(√(1+|d²/16-1|)±√(1-|d²/16-1|)))=d√((1/2±1/ 2√(1-(d²/16-1)²))/(36+d²-6d(√(1+|d²/16-1|)-+√(1-|d²/16-1|))) h+=>d=5,65,h-=>d=× S=4h=11,3*1,48=16,724
1
-
1
-
1
-
1
-
(√x+x^-0,25)⁹=x⁴,⁵+9√x⁸x^-0,25+9!/2!/7!√x⁷x^-0,5+9!/3!/6!√x⁶x^-0,75+9!/4!/5!√x⁵x^-1+9!/5!/4!√x⁴x^-1,25+9!/6!/3!√x³x^- 1,5+9!/7!/2!√x²x^-1,75+9√xx^-2+x^-2,25 =x⁴,⁵+9x^3,75+36x^3+84x^2,25+126x¹,⁵+126x^0,75+84+36x^-0,75+9x^-1,5+x^-2,25
1
-
1
-
13xy45z:728=2³*7*13, 45z:8,2+z:8,z=6, 13*10^5+xy*10³+456:7,3+xy*6+4=6xy:7, xy:7,13*10⁵+xy*10³+456:13,(12xy+1):13, xy≥0,≤973:13=74(ост.9),Ху=0,1:/13,х=7, 84у+1:13,6у+1:13,у=2, 1372458,1327458, х≤9,1 х, а значит и у.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
√2а³+3/(ab-b²),a>b>0 √2а³+3/(ab-b²)'= 3√2a²+3/b*(a-b)^-2=0,3√2a⁴-6√2a³b+3 √2a²b²-3/b=0,a²-ab=±√(1/√2/b),a²-ab-+ √(√2/2/b)=0,a=(b±√(b²±4√(√2/2/b)))/2 **+*(b+...-..)-*(b+...+..)+>a,..+..+ ±4√(√2/2/b)>0,min=0,5√2b³+3*2^0,25 √b+(0,5√2b²+2^-0,75/√b+1,5*2⁰,²⁵)√(b² +4√(√2/2/b))≥10
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
b,c<a,c-2,a-2<b a=c(b+1)/(b-1)>8 c=-0,5b+12,5-12/b≥0 (b-24)(b-1)≤0 b[1;24] b=3,c=7,a=14× b=8,c=7,a=9✓ b=24,c=0,a=0×{504}
1
-
1
-
1
-
1
-
1
-
$(0;1)((1+x²,⁵)⁵/²-2(1+x²,⁵)³/²+(1+ x²,⁵)¹/²)x¹,⁵dx=(1+x²,⁵)³,⁵/3,5/2,5-(1 +x²,⁵)²,⁵/2,5²+(1+x²,⁵)¹,⁵/1,5/2,5(0;1) =212*2¹,⁵/525-116/525
1
-
1
-
1
-
1
-
1
-
(4sinxsin2x-sin²2x-4+4cos²x)/√(16-2^(x -5)²)≥0,{16-2^(x-5)²>0,2^(x-5)²<16,(x-5)²<4,{x-5<2,x-5>-2;{x<7,x>3;хє(3;7)
4sinx*2sinxcosx-4sin²xcos²x-4+4cos²x≥0,8(1-cos²x)cosx-4(1-cos²x)cos²x+4cos²x-4≥0,8cosx-8cos³x-4cos²x+4cos⁴x+4cos²x-4≥0,4cos⁴x-8cos³x+8cosx-4≥0,(cosx-1)(4cos³x-4cos²x-4cosx+4)≥0,(cosx-1)² (cos²x-1)≥0,(cosx-1)³(cosx+1)≥0, -1+*-*1+>cosx cosxє(-∞;-1]U[1;+∞) [x=π+2πn,x=2πn;x=πn.>3,n>3/π=0,..,πn<7, n<7/3,14=2,.. n=1;2,x=π;2π{π;2π}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
КОКА+КОЛА=ВОДА,6 букв А=0 К≥1,≤4 2О+1=..О,О=9 К0¹К+К9Л=В0Д{К+Л=10+ Д,2К+1=В;К≥2,Д≤5,Д≥1 К=2:Л=8+Д,Л=1, Д=9 0/,К=3:Л=7+Д,Л=1,Д=8 В=7✓ К=4: Л=6+Д,Л=1,Д=7,Л=2,Д=8 В=9
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
a²+(x-2021)²=|x-a-2021|-|x+a-2021|,[{x≥a+ 2021,a²+(x-2021)²=-2a;{хє[-а+2021;а+2021);a²+(x-2021)²=-2x+ 4042;{х<-а+2021,a²+(x-2021)²=2a;[{x≥a+ 2021,x=2021±√(-а(а+2))+*-2-*+0>а;{хє[-а+2021;а+2021);x²-4040х+2021²-4042+а²=0;{х<-а+2021,x=2021±√(-а²+2a);[а=0,х=2021,{хє[-а+2021;а+2021), х=2020±√(1-а²);{х<-а+2021,ає(0;1), a(a-1)<0 +0°-°1+>a;[a=0,x=2021,aє[0;1],х= 2020±√(1-а²);ає(0;1),х=2021-√(-а(а-2));
1
-
1
-
log²(2)(x+1)/(2x-1)-log(2)(x+1)/(2x-1)≤0 y=log(2)(x+1)/(2x-1) y(y-1)≤0+*0-*1+>y ує(-∞;0]U[1;+∞) [{(x+1)/(2x-1)>0,(x+1)/(2x-1)≤1,(x+1)/(2x-1)≥2;[{(x+1)/(x-1/2)>0, +°-1-°+0,5>x (x-2)/(x-1/2)≥0+°0,5-*+2>x;(x-1)/(x-1/2)≤0+°0,5-*1+>x;[{хє(-∞;-1)U(0,5;+∞),хє(-∞;0,5)U[2;+∞); хє(0,5;1];[хє(-∞;-1)U[2;+∞),хє(0,5;1];хє(- ∞;-1)U(0,5;1]U[2;+∞)
1
-
1
-
1
-
1
-
1
-
c=b²/a, (a+b+b²/a)/3=b+2, 1/3/a*b²-2/3*b+a/3-2=0, b=(2/3±√(4/9-4/3/a*(a/3-2)))/(2/3/a)=a±√(a²-3a²(a/3-2))=a±√(a²-a³+6a²)єN, -a²(a-7)≥0, +0+7->x aє(-∞;7] 1±√(7-1)1±√6є/N, 2±√(4*7-8)=2±√20є/N, 3±√(7*9-27)=3±√36=9єN,c=9²/3єN 4±√(7*16-64)=4±√48є/N, 5±√(7*25-125)=5±√50є/N,6±√(7*36-216)=6±√36=12єN,c=12²/6єN 7±√(7*49-343)=7єN, c=7²/7єN(3²+3-14)/(3+1)=-0,5 (6²+6-14)/7=4, (7²+7-14)/8=5,25
1
-
1
-
1
-
1
-
{y≤√(2-x),y≥-√(2-x),y≥-x,y≥-2+x;x≤2,2-x=X²,x²+x-2=0, x=(-1±√9)/2[x=1,x=-2;-x=2+x,x= -1 2-x=(2-x)²,[2-x=0,2-x=1;{2;1} S=$(-2;1)(√(2-x)-x+2)dx+$(1;2)(√(2-x)+x)dx=-(-x+2) ¹,⁵/1,5-x²/2+2x(-2:1)+(-x+2)¹,⁵/-1,5+x²/2(1: 2)=12 1/6+0/-1,5+2 1/6=14 1/3
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
a(2n)=a2an+1, a(2n+1)=a2an-2, a7=2, a1e(0;1) a25=? a25=a2a12-2=a2(a2a6+1)-2=a2(a2(a2a3+1)+1)-2=a2³(a2a1-2)+a2²+a2-2=a2⁴a1-2a2³+a2²+a2-2
a2=a2a1+1, a2=1/(1-a1)є(1;+∞),а7=а2а3-2=1/(-а1+1)*(1/(1-а1)*а1-2)-2=(а1-2+2а1-2(а1-1)²)/(-а1+1)²=(-2а1²+6а1-4)/(а1-1)², 2а1²-4а1+2=-2а1²+6а1-4, -4а1²-10а1+6=0, А1=(10±√(100-4*(-4)*6))/(-8)=-1,25±14/8, А1=0,5 ,а25=1/(1-0,5)⁴*0,5-2³+2²+2-2=16*0,5-4=4
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(x³/18-3/2)³=9(2x+3) 0,5((x³/18-3/2) ²*x²-36)=0 x⁴-27x-+108=0 z³±27/2z-729/64=0 z=(1/2+√2049/2)¹/³*9/4+(...-..)..;- (1/2+√2049/2)¹/³*9/8-(...-..)..±√(3/4 ((1/2+√2049/2)¹/³*9/4+(...-..)..)²+2 7/2)i z=9*2¹/²cos(1/3arccos(1/32/√2)+2/3πn) x=√((1/2+√2049/2)¹/³* 9/4+(...-..)..)±2√(0,5√(((1/2+√2049/ 2)¹/³*9/4+(...-..)..)²+27/2)-(1/2+√204 9/2)¹/³*9/16-(...-..)..) ×+*+>x max=((√((1/2+√2049/2)¹/³*9/4+(...-..)..)-2√(0,5√(((1/2+√2049/2)¹/³*9/4+(...-..)..)²+27/2)-(1/2+√204 9/2)¹/³*9/16-(...-..)..))³/18-1,5)³-18 (√((1/2+√2049/2)¹/³*9/4+(...-..)..) 2√(0,5√(((1/2+√2049/2)¹/³*9/4+(...-..)..)²+27/2)-(1/2+√2049/2)¹/³ 9/16-(...-..)..))-27?0 min=((√((1/2+√2049/2)¹/³*9/4+(...-..)..)+2√(0,5√(((1/2+√2049/2)¹/³*9/4+(...-..)..)²+27/2)-(1/2+√204 9/2)¹/³*9/16-(...-..)..))³/18-1,5)³-18 (√((1/2+√2049/2)¹/³*9/4+(...-..)..)+ 2√(0,5√(((1/2+√2049/2)¹/³*9/4+(...-..)..)²+27/2)-(1/2+√2049/2)¹/³* 9/16-(...-..)..))-27<0 3 решения х=4,85;-1,85;-3✓
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{z=1-x-y, x²+y²+(1-x-y)²=2, x^3+y³+(1- x-y)³=3; {z=1-x-y, x²+y²+1+x²+y²-2x-2y +2xy=2, (x+y)(x²-xy+y²)+1-3(x+y)+3(x+y)²-(x+y)³=3; 2y²+(-2+2x)y+2x²-2x -1=0, (x+y)(x²-xy+y²-3+3x+3y-(x+y)²)-2=0; y=(2-2x±√((2-2x)²-4*2(2x²-2x-1)))/4, (x+ 0,5-0,5x±√(0,25-0,5x+0,25x²-x²+x+0,5))(x²-x(0,5-0,5x±√(-0,75x²+0,5x+0,75))+(0,5-0,5x±√(-0,75x²+0,5x+0,75))²-3+3x+3(0,5-0,5x±√(-0,75x²+0,5x+0,75))-x²-2x(0,5-0,5x±√(-0,75x²+0,5x+0,75))-(0,5-0,5x±√(-0,75x²+0,5x+0,75))²)-2=0; (0,5x+0,5±√(-0,7 5x²+0,5x+0,75))(1,5x²-0,5x-+√(-0,75x²+0, 5x+0,75)+(0,5-0,5x)²±(1-x)√(-0,75x²+0,5x+0,75)-0,75x²+0,5x+0,75-x²-x+x²-+√(-0,75x²+0,5x+0,75)-(0,5-0,5x)²-+(1-x)√(-0,75x2+0,5x+0,75)+0,75x2-0,5x-0,75)-2=0;(0,5x+0,5±√(-0,7 5x²+0,5x+0,75))(1,5x²-1,5x-+2√(-0,75x²+0,5x+0,75))-2=0, (0,5x+0,5)(1,5x²-1,5x)-+(x+1-1,5x²+1,5x) √(-0,75x²+0,5x+0,75)-2(-0,75x²+0,5x+0,75)-2=0, -+(-1,5x²+2,5x+1)√(-0,75x²+0,5x+0, 75)=-0,75x³+0,75x²-0,75x²+0,75x-1,5x²+x+1,5+2, (-1,5x²+2,5x+1)(-0,75x²+0,5x+0,7 5)=(-0,75x³-1,5x²+1,75x+3,5)² x=(-2,5±√ (6,25-4(-1,5)))/-3, x=-1/3, x=2, x=(-0,5±√ (0,25-4(-0,75)*0,75))/-1,5 x=1/3±2√2,5/3, (x+2/3)³+(-7/3-4/3)(x+2/3)-14/3-8/27+ 22/9=0, x+2/3=(-68/27/2+√((34/27)²+(-11/3)³/27))^(1/3)+(-34/27-√(34²/27²-1331/27²))^(1/3), x=-2/3+(-34+√(115 6-1331))^(1/3)/3+(-34-√-175)^(1/3)/3=-2/ 3+√1331^(1/3)*cos(1/3*arccos(-34/√1331))+2πn/3)*2/3=-2/3+2√11/3*c os(1/3*arccos(-34/√1331)+2πn/3) (-2/3+2√11/3cos(1/3*arccos(-34/√1331)))⁵+(-2/3+2√11/3*cos(1/3*ar ccos(-34/√1331)+2π/3))⁵+(-2/3+2√ 11/3*cos(1/3*arccos(-34/√1331)+4π/3))⁵=8,83..
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(2tg²x+5tgx)/(sin2x+2,5cis2x+5/2)=0{2tgx (tgx+2,5)=0,√7,25sin(2x+arccos(1/√7,25))+5/2≠0;{[tgx=0,tgx=-2,5;x≠-0,5arccos(1/√7, 25)+0,5arcsin(-5/√29)(-1)^n+πn/2;{[x=πm, x=arctg-2,5+πm;[x≠-π/4+πn, x≠-arctg(5/2) +0,75π+πn; 7/3,-1 {πm;arctg-2,5+πm}
1
-
1
-
1
-
1
-
2:3*b√(0,5sin²_b:sin²(_a+_b)+0,5-0,2 5sin²_a:sin²(_a+_b)),2:3b√(0,5+0,5sin²_a:sin²(_a+_b)-0,25sin²_b:sin²(_a+_b)) h=S∆*2/b=b√((1/3√(0,5sin²_b:sin²(_a+_b)+0,5-0,25sin²_a:sin²(_a+_b))+1/3√(0,5+0,5sin²_a:sin²(_a+_ b)-0,25sin²_b:sin²(_a+_b))+1/2)(-1/3√(0,5sin²_b: sin²(_a+_b)+0,5-0,25sin²_a:sin²(_a+ b))+1/3√(0,5+0,5sin²_a:sin²(_a+ b)-0,25sin²_b:sin²(_a+_b))+1/2)(1/3√(0,5sin²_b: sin²(_a+_b)+0,5-0,25sin²_a:sin²(_a+ b))-1/3√(0,5+0,5sin²_a:sin²(_a+ b)-0,25sin²_b:sin²(_a+_b))+1/2)(1/3√(0,5sin²_b: sin²(_a+_b)+0,5-0,25sin²_a:sin²(_a+ b))+1/3√(0,5+0,5sin²_a:sin²(_a+ b)-0,25sin²_b:sin²(_a+_b))-1/2))*2
1
-
1
-
x=y+(1±√(25(2y-1)²+359)/2)/5 359=(10n+3-10y)(10n+10y-7)[{n=18,2,10y=18,4;{n=18,2,y=-17,4;{n=-17,8,y=-17,4;{n=-17,8,y=18,4;×
1
-
1
-
1
-
1
-
1,5√2+1,5/√2=2,25√2(см) 1,5√3(см) а,√(1,125-а²) (0,75√6-√(1,125-а²))²+(1,5√3-а)²=3² √(1,125-а²)=-√2а+√1,5/2 0=3а²-√3а+1/2 а=(√3±√3i)/6 V=(4√(√545+4)+12√(√733+27)-12√(√733-27)-√(2√745-54)+9√6-10√(2√745+54)±i(4√(√545-4)+12√(√733+27)-12√(√733-27)+11√6-√(2√745+54)+√(2√745-54))i)/384 V1=(4√(√545+4)+12√(√733+27)-12√(√733-27)-√(2√745-54)+9√6-10√(2√745+54)±i(4√(√545-4)+12√(√733+27)-12√(√733-27)+11√6-√(2√745+54)+√(2√745-54))i)/64
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x=-arccos(siny/√(sin²y+1))±arccos(cosy/√(sin²y+1))+2πn t=(cosy+√2)/(sin²y+1)* sin²y (cosysin²y+√2sin²y)/(sin²y+1)'=siny (-sin⁴y-sin²y+2cos²y+2√2cosysin²y+2√2cosy-2√2sin²ycosy)/(sin²y+1)²=0 [siny=0, (cos²y+2√2cosy-6,5)²+24√2cosy-40,25=0;[y=πn,cosy=\(-88,25-24√17)*/*-√2(-16)\* -√2+√8,5(-88,25+24√17)/ -545/192*√2- 2√8,5,cosy=3572/4303√8,5-1 2064/4303 √2;*0+arccos0,32*-*π+*2π-arccos0,32-•2π>y max=98053/118600 min=0,max=980 53/118600,min=0
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
X¹/²+y¹/²=1 y=(1-√x)² $(0;1)(1-2√x+ x)dx=x-2x¹,⁵/1,5+x²/2(0;1)=1/6 L=$(0;1)2√2√(0,25+(x⁰,⁵-0,5)²)dx⁰,⁵= 2√2(0,5(x⁰,⁵-0,5)√(0,25+(x⁰,⁵-0,5)²)+ 0,125ln|x⁰,⁵-0,5+√((x⁰,⁵-0,5)²+0,25)|)(0;1)=1+0,5√2ln(√2+1)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{x=z³-y²,[y=0,y=-1;z=0,z=1,z=(1±√5)/2;z=0,2z⁵-z³+z±√(z³-z)(z²-1)=0;[{z=0,yR;{z≠0,[y=z,y=±√(z³-z);
4z⁹-4z⁷-z⁶+5z⁵+3z⁴-2z³-3z²+z+1=0 36z⁸-28z⁶-6z⁵+25z⁴+12z³-6z²-6z+1=0 z[-1;0]U[1;≠)+ z=-0,43{(0;0;0)(-1;-1;0)(0;1;1)(1/2±√5/2;1/2±√5/2; 1/2±√5/2)(-0,43;-0,59;-0,43)}
1
-
1
-
1
-
k=a(xC-3) -1/a/(xC-3)=k1 y=-1/a/(xC-3)(x-3)+9a 3/a/(xC-3)+9a=axC² √3/(xC-3)/√(xC+3)=a (-1,5+0,5xC;4,5a+xC²a/2)=(1,5;4,5a +xC²a/2) -1,5+0,5xC=1,5,xC=6 a=√3/9,y=√3/9x⅔
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x²-|3x-2|≥0 [x≥2/3,(x-1)(x-2)≥0+*+>x;{x<2/3,(x+1,5-√4,25)(x+1,5+√4,25)≥0+* +>x;[{x≥2/3,x(-∞;1]U[2;∞);{x<2/3,x(-∞;-1, 5-√4,25]U[-1,5+√4,25;∞);[x[2/3;1]U[2;∞),x (-∞;-1,5-√4,25]U[-1,5+√4,25;2/3);x(-∞;-1,5-√4,25]U[-1,5+√4,25;1]U[2;∞)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
log(2)²(ax)+log²(2)((1-a)/x) x наименьшее, а максимально {ax>0,(1-a)/x>0;[{a≥1,x>0,x<0;{aє[0;1) х>0,х>0;{а<0,х<0,х>0;[0/,ає[0;1)х>0,0/;[ає[0;1)х>0 2log(2)(ax)*1/(ax)*a+2log(2)((1-a)/x)*1/((1-a)/x)*(1-a)*-x^(-2)=2log(2)(ax)/x-2l og(2)((1-a)/x)x^-1=0, log(2)(ax/((1-a)/x)) =0,ax/(1-a)*x=1, x²=(1-a)/a, x=±√((1-a)/a) -+>x min log(2)²(a√((1-a)/a))+log²(2)((1-a)/√((1-a)/a))=0,25log(2)²((1-a)a) +0,25log(2)²((1-a)a)=0,5log(2)²((1-a)a) 0,5*2log(2)(a-a²)*1/(a-a²)*(1-2a)=0, [log(2)(a-a²)=0,1-2a=0; [a-a²=1,a=1/2; -a²+a-1=0,a=(-1±√(1-4-1*-1))/-2[a=0,5±√-3/2 0/, +*->a {0,5}
1
-
1
-
1
-
1
-
(a 2 3|2)
(0 a²-4 a-6|a²-4)
(0 0 a+1|0) [{A≠-1,a≠0,a≠±2, z=0,y=1,x=0;{a=0,z=0,y=1,xR;{a=-1,zR,y=1-7z/3,x=-5/3z;{a=±2, z=0,yR,x=±(1-y).
1
-
1
-
a=2*3⁰,²⁵ y=3⁰,⁷⁵/2,x=3¹,²⁵; tg/_A=3⁰,⁵/6 (3⁰,⁵/6+1/6)x=2*3⁰,²⁵ x=2*3¹,²⁵(3⁰,⁵-1) 3⁰,⁵/6*x-2*3⁰,²⁵=1/6*x,x=2*3¹,²⁵(3⁰,⁵+1) S=447- 36√3
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
tg(x/2)=t $4t/(-2+(t-1)²)/(1+t²)dt= 0,5ln|t-1-√2|+0,5ln|t-1+√2|-0,5ln|t²+1|-arctgt+c=0,5ln|tg(x/2)-1-√2|+ 0,5ln|tg(x/2)-1+√2|-0,5ln|tg²(x/2)+1| -x/2+c
4t=A(t-1+√2)(t²+1)+B(t-1-√2)(t²+1) +C(t-1+√2)(t-1-√2)*2t+D(t-1+√2)(t- 1-√2){A=0,5,B=1/2,C=-0,5,D=-1;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(a+1)³/b+(b+1)³/c+(c+1)³/a 3(a+1)²/b-(c+1)³a-²=0 a=-0,5+√(0,25+√((c+1)³b/3))-*+>a min=(b+1)³/c+(4b-¹+b-⁰,⁵√((c+1)³/3))√(0,25+b⁰,⁵√((c+1)³/3))+2b-¹+ 1,5b-⁰,⁵√((c+1)³/3)≥3(c+1)³/c≥3/4
3(b+1)²/c+(-b-²-3,125b-¹,⁵√((c+1)³/3)-5b-¹(c+1)³/12)*(0,25+b⁰,⁵√((c+ 1)³/3))-⁰,⁵-2b-²-0,75b-¹,⁵√((c+1)³/3) =0 (-1-3,125b⁰,⁵√((c+1)³/3)-5b(c+1) ³/12)²=b¹,⁵√3/16(c+1)⁴,⁵+1+19/4b⁰, ⁵√((c+1)³/3)-3(b²+b)²/c-29/64b(c+1) ³+(9c-²-13,125/c)b⁰,⁵√((c+1)³/3)(b²+ b)²+9/4(b²+b)²/c² 6(c+1)²(c-1/2)/c²= 0 c=1/2-*+>c
1
-
1
-
1
-
1
-
1
-
1
-
1/(x-1)+5/(6-3√(-x²+x+6))>1/(|x-1|+1),[{xє[1;3],(√(-(x+2)(x-3))-2-5/3x²+5/3x)/x/(x-1)/(√(-(x+2)(x-3))-2)>0;{xє[-2;1),((2x-3)√(-(х+2)(х-3))-5/3х²+х+8/3)/(√(-x²+x+6)-2)>0;°-1°2>х
(X+2)(x-3)≤0,-2+*3*+>x хє[-2;3],-х²+х+ 6=4,-х²+х+2=0,х=(-1±√(1-4*-1*2))/-2[х=-1,х=2;-5/3*1,5²+1,5+8/3=-3 3/4+1 1/2+2 2/3=5/12≠0,(2x-3)√(-(х+2)(х-3))-5/3х²+ х+8/3=0,(2x-3)√(-(х+2)(х-3))=5/3х²-х-8/3,(4х²-12х+9)*-(х+2)(х-3)=25/9х⁴+х²+64/9 10/3х³-80/9х²+16/3х,(5/3х²-х-8/3)/(2х- 3)≥0,-(4х²-12х+9)(х²-х-6)-25/9х⁴+10/3х³+ 71/9х²-16/3х-64/9=0,(х-(1+√(1-4*5/3 8/3))/(10/3))(х-(1-√(169/9))/10*3)/(х-1,5)≥0;-1+°1,5-1,6+>х 4х⁴+4х³+24х²+12х³-12х²-72х-9х²+9х+54-25/9х⁴+10/3х³+71/9х²-16/3х-64/9=0хє [-1;1,5)U[1,6;+∞),-61/9x⁴+19 1/3x³+10 8/9x²+3 2/3x+46 8/9=0,хє[-1;1,5)U[1,6;+ ∞),x⁴-174/61x³-89/61x²-33/61x-422/61=0, учитывая 1-ое неравенство хє [-1;1), -450/61<-207/61 (х²-87/61х-6499/61²)² 3(40931+58*6499)/61³х-422/61-6499²/61⁴=0,\ (2653,5-√(6499²+7569/4*3721))/3721<-1*/87/122*\*87/122+√(6499²+8 7²/2²*61²)/61²>1/ -1'553'619/3721²/61 (2653,5-√(6499²+7569/4*3721))-422/61-6499²/61⁴<0,(-9'670'326,5-422*3721*61- 6499²)/3721²<0,(-1'553'619/61*(2653,5 +√(6499²+7569/4*3721))-422*3721*61-6499²)/3721²<0,
7'768'095
4'660'857
6'214'476
67582426,5
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
o(0;45°) √(36+l²-12lcoso),√(9+l²-6lc os(3o)) √2*sin(3o)√(5+sin(6o)-2sin(4o)-2s in(2o)-2cos(4o)-2cos(2o))=-0,5+sin(2o)+cos(2o)+sin(4o)-cos(4o)+0,5 cos(6o)-0,5sin(6o),3cos(3o)+3sin3 o=l,l≥3cos(3o)
2*sin²(3o)(5+sin(6o)-2sin(4o)-2sin (2o)-2cos(4o)-2cos(2o))=(-0,5+sin(2o)+cos(2o)+sin(4o)-cos(4o)+0,5 cos(6o)-0,5sin(6o))² o=15,3°;28,7°✓
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
у=х²,у=5/4-х, у=0, х²(5/4-х2-х) - Макс.хє[0;1,25] Х⁴-х³+1,25х², -4х³-3х²+1,25х=0, х=0, 4х²+3х-1,25=0, х=(3±√(9-4*4*-1,25))/8,х=3/8±√29/8,х=3/8+√29/8, +**+*3/8+√29/8- макс.площ. (3/8+√29/8)²(1,25-(3/8+√29/8)²-3/8-√29/8)=(9/64+6√29/64+29/64)(1,25-19/32-3√29/32-3/8-√29/8)=38/64*(40-19-12)/32-19/32*√29*7/32+3√29/32*9/32-3√29/32*19√29/32²=(342*2⁴-57*29)/2¹⁵-106√29/1024=51819/32768-53√29/1024
3342. 57
*16. *29
20052. 513
3342 114
53472 1653
-1653
51819
1024
* 32
2048
3072
32768
1
-
1
-
1
-
a-1/a=b,b-1/b=c,c-1/c=a (a²)³-1/3(a²)²+ 2/3a²-1/3=0, a≠0;±1 (a²-1/9)³+17/27(a ²-1/9)-191/729=0 a²-1/9=(191/1458+√(1 91²/1458²+(17/27)³/27))^(1/3)+(191/2 -13,5√77)^(1/3)/9,a=±√(1+(95,5+13,5 √77)^(1/3)+(95,5-13,5√77)^(1/3))/3 b=± √(1+(95,5+13,5√77)^(1/3)+(95,5-13,5√ 77)^(1/3))/3-+3/√(1+(95,5+13,5√77)^ (1/3)+(95,5-13,5√77)^(1/3)),c=±√(1+(95, 5+13,5√77)^(1/3)+(95,5-13,5√77)^(1/ 3))/3-+3/√(1+(95,5+13,5√77)^(1/3)+(95, 5-13,5√77)^(1/3))-1/(±√(1+(95,5+13,5√7 7)^(1/3)+(95,5-13,5√ 77)^(1/3))/3-+3/√(1 +(95,5+13,5√77)^(1/3)+(95,5-13,5√77)^ (1/3))) 1/a/b+1/a/c+1/b/c=-1,37..
1
-
1
-
$(0;1)(x+2x³)√2√(0,5+x²)dx=√2/2(x²+ 0,5)¹,⁵/1,5+$2√2x³√(x²+0,5)dx(0;1)=√2/3 *1,5¹,⁵-√2/3*0,5¹,⁵+$(√0,5;√1,5)(2√2u⁴-√2 u²)du=0,5√3-1/6+2√2u⁵/5-√2u³/3(√0,5; √1,5)=0,9√3-0,1
(x²+0,5)⁰,⁵=u,x=√(u²-0,5) dx=(u²-0,5)-⁰,⁵ udu
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{5|x|+12|y-2|=60,y²-a²=4(y-1)-x²;[{y=7-5/12x,x≥0,y≥2;{y=-3+5/12x,x≥0,y≤2;{y=7+5/12x,x≤0,y≥2;{y=-3-5/12x,x≤0,y≤2;y ²-4y-a²+4+x²=0;y=2±√(a²-x²);ує[-3;7] √(а²- х²)≤5,а²≤25+х²,≥х² а²≥0,≤169,ає[-13;13] 2-√(а²-х²)≥-3,√(а²-х²)≤5 ає[-13;13]
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
arcsincosx=cosarcsin(x-a)≤π/2,-π/2 arcsinsin(π/2-x)=sin(π/2-arcsin(x-a)) [{π/2-x=√(1-(x-a)²),π/2-x≤π/2,≥-π/2,arcsin(x a)є[-π/2+2πn;π/2+2πn];{π/2-x=-√(1-(x-a)²),π/2-x≤π/2,≥-π/2,arcsin(x -a)є[π/2+2πn;3π/2+2πn];{π-(π/2-x)=√(1-(x-a)²),π/2-x≥π/2,≤π,arcsin(x -a)є[-π/2+2πn;π/2+2πn];{π/2+x=-√(1-(x-a)²),π/2-x≥π/2,≤π,arcsin(x -a)є[π/2+2πn;3π/2+2πn];[{π²/4-πx+x²=1-(x-a)²,x≥0,≤π,arcsin(x-a)є[-π/2;π/2];{π²/4-πx+x²=1-(x-a)²,x≥0,≤π,arcsin(x-a)=π/2;{(π/2+x)²=1-(x-a)²,x≤0,≤-π/2,arcsin(x -a)є[-π/2;π/2];{(π/2+x)²=1-(x-a)²,x≤0,≥-π/2,arcsin(x-a)=π/2;[{x=(π+2a±√(π²+4aπ+4a²-2π²+8-8a²))/4π²/4,x≥0,≤π,x-aє[-1;1];{x=(π+2a±√((π+2a)²-4*2(π²/4-1+a²)))/4,x≥0,≤π,x-a=1;{x=(-π+2a±√((π-2a)²-4*2(π²/4-1-a²)))/4,x≤-π/2,x -aє[-1;1];{(π/2+x)²=0,x≤0,≥-π/2,x-a=1;[{x=0,25π+0,5a±√(-(π-2a)²+8)/4,x≥0,≤π,xє[a-1;a+1];{a+1=π/4+0,5a±√(-π²+4πa-4a²+8)/4,x≥0,≤π,x=a+1;{x=-π/4+0,5a±√(-π²-4πa+8+12a²)/4,x≤-π/2,xє[a-1;a+1];{x=-π/2,x≤0,≥-π/2,x=a+1;[{x=0,25π+0,5a±√(-(π-2a)²+8)/4,π-2a≤√8,π-2a≥-√8;aє[-1;1+π],xє[0;π]xє[a-1;a+1];{(0,5a+1-π/4)²=(-π²+4πa-4a²+8)/16,x≥0,≤π,x=a+1;{x=-π/4+0,5a±√(-π²-4πa+8+12a²)/4,(a-(4π+√(16π²-4*12(-π²+8)))/24)(a-(π/6-√(16π²+48π²-364)/4)≥0,+**+>а a≤1-π/2,x≤-π/2,xє[a-1;a+1];{x=-π/2,a=-π/2-1;
{x=0,25π+0,5a±√(-(π-2a)²+8)/4,a≥0,5π-√2,a≤0,5π+√2,aє[-1;1+π],xє[0;π]xє[a-1;a+1];ає[0,5π-√2;0,5π+√2]ає[0,339;0,512] хє[1,339]
[ає[0,339;0,512] хє[1,339],ає[π/6-√(4π²-22,75);1-π/2]x=-π/4+0,5a±√(-π²-4πa+8+12a²)/4,x≤-π/2,xє[a-1;a+1],а⁴-2πа³-(-1,5π²+4,25)а²+-(2+0,5π³-4,5π)а-17/16π²+π/2+π⁴/16+3=0, ає[-1;π-1]x≥0,≤π,x=a+1;х=-π/2,а=-π/2-1;[ає[π/6-√(4π²-22,75);1-π/2]U{-π/2-1}U[0,339;0,512],{a=2,26..,a=0,06,a=0,33,a =3,62>2,14.. aє[-1;π-1] ає[π/6-√(4π²-22,75);1-π/2]U{0,06}U{0,33}U[0,339;0,512],
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
y"-3y'+2y=e^tsint a²-3a+2=0, a=(3±√(9-4 2))/2 a=1,a=2 y=e^x y=e^(2x) y0=c1e^x+ c2e^(2x) y=(c3x+c5)e^tcost+(c4x+c6)e^t sint e^t((c3x+c5+c3+c4x+c6)cost+(c4x-c 3x+c6-c5+c4)sint)+e^t((c3+c4)cost-(c3x +c4x+c3+c5+c6)sint+(c4-c3)sint+(c4x-c3 x+c4+c6-c5)cost)-3(e^t ((c3x+c5)cost+(c 4x+c6)sint)+e^t(c3cost-(c3x+c5)sint+c4 sint+(c4x+c6)cost))+2 ((c3x+c5)e^tcost+(c4x+c6)e^tsint)=e^t sint,(-c3-c4x+2c4-c3x+3c6-c5)cost+(c3x-c4-2c3-c4x-2c5)sint=sint, -c4x-c3x-c3+2c4+3c6-c5=0,c3x-c4-c4x-2c3-2c5=1; {-c4-c3=0,-c3+2c4-c5+3c6=0,-1 c3-c4=0,-c4-2c3-2c5=1*1/2; {-c4-c3=0,-3c4-c5+3c6=0,-2c4=0,-0,5c4+c5=-0,5;{c3=0,-c5+3c6=0,c4=0,c5=-0,5; c3=0,c4=0,c5=-0,5,c6=-1/6, y=-0,5e^tcost -1/6e^tsint y=c1e^x+ c2e^(2x)-0,5e^tcost -1/6e^tsint
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
$(3x³+5x²-25x-1)/(x³-3x+2)dx=$(3+(5x²- 16x-7)/(x-1)/(x²+x-2))dx=$(3+A/(x-1)+B/(x-1)²+C/(x+2))dx=3x-6(x-1)^-1/-1+5ln|x+2|+C
5x²-16x-7=A(x-1)(x+2)+B(x+2)+C(x-1)² =A(x²+x-2)+Bx+2B+Cx²-2Cx+C=Ax²+Ax-2A+Bx+2B+Cx²-2Cx+C,{A+C=5,A+B-2C=- 16,-2A+2B+C=-7|•-0,5;{A+C=5,-B+3C=21,B +1,5C=1,5;{A+C=5,-B+3C=21,4,5C=22,5;{A=0,B=-6,C=5;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
Sin(7x/2)sin(x/2)+cos(7x/2)cos(x/2)= cos²3x,sin4x-cos²3x=0,2sin2xcos2x-(cos6x+1)/2=0,2sin2xcos2x-2cos³2x+1,5cos2 x-1/2=0,±2√(1-cos²2x)cos2x=2cos³2x-1,5cos2x+1/2,4(1-cos²2x)cos²2x=4cos⁶2x+2,25cos²2x+0,25-6cos⁴2x+2cos³2x-3/2cos2x,-4cos⁶2x+2cos⁴2x-2cos³2x+1,75cos²2x+1,5cos2x-0,25=0,-0,5=-0,5 cos2x=-1,-4 cos⁵2x+4cos⁴2x-2cos³2x+1,75cos2x-0,25=0,2x=π+2πn,x=π/2+πn,x=±0,194+πn,x= ±0,712+πn,x=±1,111+πn.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(10а+в)/(10в+с)=а/с, 10ас+вс=10ва+са, 10а(с-в)=с(а-в),с=а*10в/(9а+в)а=1,в=1,с=1;в=6,с=4;в=9,с=5, а=2,в=2,с=2, в=6,с=120/24=5, а=3,в=3,с=3, а=4,в=4,в=9,с=360/45=8, а=5,в=5, с=в+в(а-в)/(9а+в) ,а=в
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{x(-1;0)y=ax²+bx+c,a,b,c<0,5 x≤y≤0,5(x²+ 1);x²+1≥2x,(x-1)²≥0 x=1,y=1:1=a+b+c,c=1 -a-b>0,a(0;0,5),b(0;0,5) y(0)=c,y(-1)=a-b+ c=1-2b (a-0,5)x²+bx+c-0,5≤0,{b²-4(a-0,5)(c-0,5)<0,a-0,5<0;{(b+2a-1)²<0, a<0,5;b+2a -1=0,b=1-2a,x≤ax²+(1-2a)x+a,-ax²-2ax-a≤0,-a(x+1)²≤0,a≥0
2020(a²+b²-c²)=2020(a²+b²-(1-a-b)²)=2020(a²+b²-1-a²-b²+2a+2b-2ab)=2020(1-4a+4a²)>=0,≤2020
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
f(xf(x)+f(y))=f²(x)+y, f(f(0))=f2(0), f(f(x)x+f(-f²(x)))=0,f(f(-f²(0)))=0, f(f(-f(f(0))))=0, a0an^n+a1an^(n-1)+...+an=an², an=0, a0an^(n-1)+a1an^(n-2)+..+(a(n-2)-1)an+a(n-1)+1=0, a(n-1)=-a0an^(n-1)-a1an^(n-2)-..-(a(n-2)-1)an-1, a0(a0(-a0an^n-a1an^(n-1)-...-an)^n+a1(-//-)^(n-1)+..+an)^n+a1(a0(-//-)^n+a1(-//-)^(n-1)...+an)^(n-1)+...+an=0,
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{а(х+2)+у=3а,а+2х³=у³+(а+2)х³;{у=-ах+а,а +2х³-(-ах+а)³-ах³-2х³=0;а+а³х³-3а²х²*а+3аха²-а³-ах³=0,(а³-а)х³-3а³х²+3а³х+а-а³=0, а=0,хєR,(х-а³/(а³-а))³-3а²/(а²-1)²(х-а²/(а²-1))+(-3а²+1)/(а²-1)³=0,х-а²/(а²-1)= ((1,5а²-0,5)/(а²-1)³+√((1,5а²-0,5)²/(а²-1)⁶+(-3а²/(а²-1)²)³/27))^(1/3)+(1,5а²-0,5-√((1, 5а²-0,5)²-а⁶))^(1/3)/(а²-1) {х=а²/(а²-1)+ (1,5а²-0,5+√((1, 5а²-0,5)²-а⁶))^(1/3)/(а²-1) +(1,5а²-0,5-√((1,5а²-0,5)²-а⁶))^(1/3)/(а²- 1),у=-а³/(а²-1)-а(1,5а²-0,5+√((1, 5а²-0,5)²-а⁶))^(1/3)/(а²-1) а(1,5а²-0,5-√((1,5а²-0,5)²-а⁶))^(1/3)/(а² 1)+а.
1
-
1
-
x²-290x=289√x x⁰,⁵(x¹,⁵-290x⁰,⁵-289)=0[x= 0,x⁰,⁵=(289/2+√(144,5²+(-290)³/27))^(1/3) +(289/2-√(-71'493'289,75)/9)^(1/3)=2√(2 90/3)cos(1/3arccos(867/168200√870)+ 2πn/3);✓,-..,-.. [x=0,x=1160/3cos²(1/3arcc os(867/168200√870)).[√(x-x⁰,⁵)=0,√(x-x⁰,⁵) =√(1160/3cos²(1/3arccos(867/168200√ 870))-2√(290/3)cos(1/3arccos(867/1682 00√870)))=18 2/3...16,.. .
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(x²+y²)/(x²-y²)=(k+-√(k²-4))/2 x²+y²=(0,5k ±0,5√(k²-4))x²-(0,5k±0,5√(k²-4))y² x^2=(-0,5k-+0,5√(k²-4)-1)y²/(1-0,5k-+0,5√(k²-4)) (x⁸+y⁸)/(x⁸-y⁸)+(x⁸- y⁸)/(x⁸+y⁸)=((-1-0,5k-+0,5√(k²-4))⁴/(1-0,5k -+0,5√(k²-4))⁴y⁸+y⁸)/((-1-0,5k-+0,5√(k²-4))⁴/(1-0,5k -+0,5√(k²-4))⁴y⁸-y⁸)+((-1-0,5k-+0,5√(k²-4))⁴/(1-0,5k -+0,5√(k²-4))⁴y⁸-y⁸)/((-1-0,5k-+0,5√(k²-4))⁴/(1-0,5k -+0,5√(k²-4))⁴y⁸+y⁸)=((-1-0,5k)⁴-+4(-1-0,5k)³*0,5√(k²-4)+4!/2!/2!*(-1-0,5k)²*0,25√(k²-4)²-+4(-1-0,5k)*0,125√(k²-4)³+√(k²-4)⁴*0,0625+1)/(((-1-0,5k)⁴-+2(-1-0,5k)³√(k²-4)+1,5(-1-0,5k)²(k²-4)-+0,5(-1-0,5k)√(k²-4)³+0,0625(k²-4))²)/(1-4*0,5k+6*0,25k²-0,5k³+0,0625k⁴+ 1,5(1-k+0,25k²)(k²-4)+0,0625k⁴-0,5k²+1-+√(k²-4)(2(1-3*0,5k+3*0,25k²-0,125k³)+0,5(1-0,5k)(k²-4))-1)+(0,5k⁴-2k³+k²+4k-5-+√(k²-4)(2,0k²-0,75k³-k))/((-4+4k+k²+2k³+0,5k⁴-+(-2k-2k²-0,5k³)√(k²-4))/(0,5k⁴-2k³+k²+4k-4-+√(k²-4)(2,0k²-0,75k³-k))+1)=1/(0,5k⁴-2k³+k²+4k-5-+√(k²-4)(2,0k²-0,75k³-k))/((-4+4k+k²+2k³+0,5k⁴-+(-2k-2k²-0,5k³)√(k²-4))*(0,5k⁴-2k³+k²+4k-4-+√(k²-4)(-0,75k³+2,0k²-k))+1)+(0,5k⁴-2k³+k²+4k-5-+√(k²-4)(-0,75k³-2,0k²-k))/((0,5k⁴+2k³+k²+4k-4-+(-0,5k³-2k²-2k)√(k²-4))(0,5k⁴+k²+4k-4±√(k²-4)(-0,75k³+2k²-k)+2k³)/((0,5k⁴+k²+4k-4-+√(k²-4)(-0,75k³+2,0k²-k))²-4k⁴)+1)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
√(5-2√2sin85°),arccos((1,5-√2/2sin85°-0,5cos40°)/√(5-2√2sin85°)/sin20°),200°-arccos((1,5-√2/2sin85°-0,5cos40°)/√(5-2√2sin85°)/sin20°)
Arctg((-1,5+√2/2sin85°+0,5cos40°+cos20°√(5-2√2sin85°-(1,5-√2/2sin85°-0,5cos40°)²/sin²20°))/(cos20°(1,5-√2/2sin85°-0,5cos40°)/sin20°+√((2,5-√2sin85°)(1-cos40°)-(1,5-√2/2sin85°-0,5cos40°)²)+1))=x{6°}
1
-
1
-
1
-
1
-
1
-
1
-
x⁶-9x⁵+14x⁴+51x³-91x²-78x+70=0 (x³-4,5x²-3,125x+11,4375)²+2 31/ 64x²-6,5990625x-50 209/256=0{-1,87;-1,29;0,70;2,29;4,29;4,87}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
AC=√2BC 50²+AK²=AB², AK=√(BC²-2500) KD²+(50-CD)²=BC², KD=√(BC²-(50-CD)²) AD=√(BC²-2500)+√(BC²-(50-CD)²) (√(BC²-2500)+√(BC²-(50-CD)²))²+CD²=2BC², BC²-2500+2√(BC²-2500)√(BC²-(50-C D)²)+BC²-(50-CD)²+CD²=2BC², √(BC²-2500)√(BC²-(50-CD)²)=(2500+2500+100CD+CD²-CD²)/2=2500+50CD, (BC²-2 500)(BC²-2500+100CD-CD²)=6'250'000+ 250'000CD+2'500CD², BC⁴-2500BC²+100 BC²CD-BC²CD²-2500BC²+6250'000-250'000CD+2500CD²-6'250'000-250'000CD-2'500CD²=0,BC⁴-5000BC²+100BC²CD-BC²CD²-500'000CD=0,BC²=(5000-100CD+CD²±√((5000-100CD+CD²)²-4(-500'000CD)))/2= 2500-50CD+0,5CD²+√(5000²-10*10⁵CD+100²CD²+CD⁴+10'000CD²-200CD³+2'000'000CD)/2=2500-50CD+0,5CD²±√((5000+ 100CD)²+CD⁴+10'000CD²-200CD³)/2>C D²,>50², BC²/2+CD*AD/2=1250-25CD+0, 5CD²+√((5000+100CD)²+CD⁴+10'000CD ²-200CD³)/4+0,5CD*(√(-50CD+0,5CD²± √((2500+500CD)²+0,25CD⁴+2'500CD²-50CD³))+√(50CD-0,5CD²±√((2500+50CD)² +0,25CD⁴+2500CD²-50CD³)))=1250-25CD+0,5CD²+√((2500+50CD)²+0,25CD⁴+250 0CD²-50CD³)/2+0,5CD*(√((-25CD+0,25CD ²+0,5(-1*(2500+500CD))+√(-25CD+0,25C D²-0,5√-1*(2500+500CD))+√((-25CD+0,25 CD²+√-1*(2500+500CD))+√(-25CD+0,25C D²-0,5√-1*(2500+500CD))
1
-
1
-
$(1;∞)dx/(x⁴+x)=$(1;∞)dx(A/x+B/(x+1) +C(2x-1)/(x²-x+1)+D/(x²-x+1))=ln|x|-1/3ln|x+1|-1/3ln|x²-x+1|(1;∞)=∞-∞-∞-0+1/3ln 2=ln|x/(x+1)^(1/3)/(x²-x+1)^(1/3)|∞+1/3 ln2=0+1/3ln2=1/3ln2
A(x+1)(x²-x+1)+Bx(x²-x+1)+C(2x-1)x(x+1) +Dx(x+1)=1,Ax³+A+Bx³-Bx²+Bx+2Cx³+Cx²-Cx+Dx²+Dx=1,{A+B+2C=0,-B+C+D=0,B-C +D=0,A=1;{A=1,B+2C=-1,-B+C+D=0,2D=0;{A=1,B+2C=-1,3C=-1,D=0;{A=1,B=-1/3,C=- 1/3,D=0;
0,5-0,3865=0,1135
0,325;0,475 0,15*0,41=0,0615
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(6*1,5^2x-5*1,5^x+1)/1,5^x/(1,5^x-1)≤0,(1,5^x-1/2)(1,5^x-1/3)/(1,5x-1)≤0 -1/3*+1/ 2*-1°+>1,5^x 1,5^x(-∞;1/3]U[1/2;1), x(-∞; log1,5(1/3)]U[log1,5(1/2);0)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
$6x^-4/(1-6x^-4)dx=$6/(x⁴-6)dx=$(A/(x-6⁰,²⁵)+B/(x+6⁰,²⁵)+C2x/(x²+6⁰,⁵)+D/(x²+6⁰,⁵))dx=-6⁰,²⁵/(1-6⁰,⁵)ln|x-6⁰,²⁵|+6⁰,²⁵/(-1-6⁰,⁵)ln|x+6⁹,²⁵|+6⁰,⁵/(-1-6⁰,⁵)arctg(x/6 ⁰,²⁵)/6⁰,²⁵+c
A(X+6⁰,²⁵)(x²+6⁰,⁵)+B(x-6⁰,²⁵)(x²+6⁰,⁵)+2 x(x²-6⁰,⁵)C+D(x²-6⁰,⁵)=6,{A+B+2C=0,6⁰,²⁵A 6⁰,²⁵B+D=0,|•6^-0,25 6⁰,⁵A+6⁰,⁵B-2*6⁰,⁵C= 0,|•6^-0,5 6⁰,⁷⁵A-6⁰,⁷⁵B-6⁰,⁵D=6;{A+B+2C=0,2B+2C-6^-0,25D=0,4C=0,2B+2C+6^0,25D=-6⁰,²⁵;{A+B+2C=0,2B+2C-6^ 0,25D=0,C=0,(-6^-0,25-6⁰,²⁵)D=6⁰,²⁵;{A=-6^0,25/(-1-6⁰,⁵),B=6^0,25/(-1-6⁰,⁵), C=0,D=6⁰,⁵/(-1-6⁰,⁵);
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
f(x+f(y))=x+y+1,x=0,f(f(y))=y+1,f(y)=ky+b,f(f(y))=k(ky+b)+b=k²y+kb+b²=y+1,{k²=1,kb+b²=1;[{k=1,b²+b-1=0;{k=-1,b²-b-1 =0;[{k=1,b=(-1±√(1-4*-1))/2;{k=-1,b=(1±√ 5)/2;f(x)=x-0,5±√5/2,f(x)=-x+0,5±√5/2,
1
-
1
-
1/n=0.-n-=n/9...9,n²=10^m-1,m знаков у n n=√(10^m-1)≥10^(m-1) 10^m-1≥10^(2 m-2),-0,01*10^2m+10^m-1≥0,(10^m-(-1 +√(1-4*0,01*-1))/-0,02)(10^m-(-1-√0,9 6)/-0,02)≤0+*50-20√6*50+20√6+>10^m 10^mє[50-20√6;50+20√6],mє[lg(50-20√6);lg(50+20√6)]mє[1;1] m=1,n≥10,≤99 n=3
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1/а+1/b+1/c=1/2,a,b,cєN a=3,1/b+1/c= 1/6,b=7,c=42,b=8,c=24,b=9,c=18,b=10,c=15, b=12,c=12 a≤b≤c,a≤6 a=4,1/b+1/c= 1/4,b=5,c=1/20, b=6,c=12, b=8,c=8 a=5,1/b+1/c=3/10,b=5,c=10, a=6,1/b+1/c=1/3 b=6,c=6
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{у=65/(х+z),xz²+z(x²+48)-17x=0; {x=0,z=0;× z=(-x-48/x±√(x²+164+48²x-²))/2 z'=(-1+48x-²±(x²+164+48²x-²)-⁰,⁵(x-48² x-³))/2=0 [x=±√48,+=>x>0,x=0;-*-√48+°0+•√48->x-•-√48-°0 -•48->x min=√65 max=-√48+√65 z(4)=-8+9=1 z(3)=(-19+ √429)/2=1-13/84× z(12)=-8+9=1 z(-4)=17 z(-1)=(49+√(68+49²))/2× (x²+82)²-n²=34 *130:4 [{x=±32,n=1104;{x=±12, n=216;{x=±4,n=72;{x=0,n=68; x=-32;-12 z=(33,5+ 34,5)/2=34 z=(16+18)/2=17 {(4;13;1)(12 ;5;1)(-4;5;17)(-32;32,5;34)(-12;13;17)}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
231<(2n+m-1)/2*m<245,{0,5m²+(n-1/2) m-231>0,0,5m²+(n-1/2)m-245<0; {(m-(-n+ 1/2+√((n-1/2)²-4*0,5*231))/1)(m-(-n-√(n² -n+1/4+462)))>0+**+>m,(m-(-n+1/2+√((n-1/2)²-4 *0,5(-245)))/1)(m-(-n-√(n²-n+1/4+490)))<0;+°-°+>m {mє(-∞;-n+1/2-√(n²-n+462,25))U(-n+1/2+√(n²-n+462,25);+∞),mє(-n+1/2-√(n²-n+49 0,25);-n+1/2+√(n²-n+490,25)) mє(-n+1/2-√(n²-n+490,25);-n+1/2-√(n²-n+460,25))U(-n+1/2+√(n²-n+460,25);-n+1/2+√(n²-n+490,25)) 1/2+√460,25=1/2+21,9 2=22,42 1/2+22 6,25/44=22 28,25/44=2 2,6.. поэтому промежуток с ростом n будет уменьшаться и не останется ни одного целого числа.
1
-
1
-
1
-
log(x+8)(x²-3x-4)≤2log(x-4)²|x-4| {x+8>0,x +8≠1,x²-3x-4>0,(x-4)²>0,(x-4)²≠1;{x>-8,x≠ 7,(x-4)(x+1)>0-1+°-°4+>x,x≠4,x≠-3,x≠-5;{xє(-8;-7)U (-7;-5)U(-5;-3)U(-3;4)U(4;+∞), хє(-∞;-1)U(4;+∞);хє(-8;-7)U(-7;-5)U(-5;-3)U(-3;-1)U(4;+∞).log(x+8)(x²-3x-4)≤1,[{x+8>1,x²-3x-4≤x+8;{x+8є(0;1),х²-3х-4≥х +8;[{х>-7,х²-4х-12≤0;{хє(-8;-7),х²-4х-12≥0;[{х>-7,(х-(4+√(16-4*4*-12))/2)(х-(2-√(4 +48)))≤0;+*+>х{хє(-8;-7),(х-2-√52)(х-2+√52)≥0; +-*+>х[{х>-7,хє[2-√52;2 +√52];{хє(-8;-7),хє(-∞;2-√52]U[2+√52;+ ∞);[хє[2-√52;2+√52],хє(-8;-7);хє(-8;-7)U [2-√52;2+√52],хє(-8;-7)U[2-√52;-5)U(-5;-3)U(-3;4)U(4;2+√52]
1
-
1
-
(f(x)-0,375x²)'²-(f(x)-0,375x²)=0,9375x²+4,5x+4 (f(x)-0,375x²)'(f(x)-0,375x²)-⁰,⁵=±1 (f(x)-0,375x²)⁰,⁵/0,5=±x+c,(f(x)-0,375x²)= (±0,5x+0,5c)² 2n-2=2,n=2 f(x)-0,375x²= a2x²+a1x+a0 3a2²x²+(4a2a1-a1)x+a1²-a0 =0,9375x²+4,5x+4{3a2²=0,9375,4a2a1-a1=4,5,a1²-a0=4;{a2=±0,25√5, a1=±9/8√5 +9/8,a0=15/32±81/32√5;[f(x)=0,625x² ±0,5cx+0,25c²,f(x)=(0,375±0,25√5)x²+(±9/8√5+9/8)x+15/32±81/32√5. 5=0,25 c²,c=±√20 f(0)=0,625x²±0,5√20x+5, 0/.
1
-
1
-
logy(1-x²+y)≥2[y(1;1/2+√(1,2 5-x2)],x(-1; 1);[x(-∞;-√1,25)U[-1;1]U(√1,25;∞),y(0;1); y[-√(1,25-x²)+0,5;0,5+√(1,25-x²)],x[-√1,25;- 1)U(1;√1,25];
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
у=75°-х, sin²x+sin²(75°-x)=3/4, (1-cos2x)/2+(1-cos(150°-2x))/2=3/4, cos2x+cos(150°-2x)=1/2,2cos75°cos(2x-75°)=1/2, cos(2x-75°)=1/4/√((√3-1)²/4),2x-75°=±arccos(0,25/(√3-1)*2)+2πn,nєZ, x=37,5±0,5arccos(0,25(√3+1))+πn,nєZ, y=37,5-+0,5arccos(0,25(√3-1))-πn,
-√3/2=2²-1, =√((-√3/2+1)/2)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{x²+20x+y²-20y+75=|x²+y²-25|,x-y=a;>1 реш.[{х(х+5)≥0+*-5-0+>х,y=х+5,-5=a;{х²+у²<25,(x+5)²+(y-5)²=25,x-y=a;[{хє (-∞;-5]U[0;∞),y=x+5,a=-5;{у=5±√(25-(х +5)²),хэ́(-5;0);х-5+√(25-(х+5)²)=а;1+0,5 (25-(х+5)²)^-0,5-2(х+5)=0,(х+5)²/(25-(х +5)²)=1,(х+5)²=25-(х+5)²,(х+5)²=12,5 х= -5±√12,5,х=-5+√12,5+*->х максимум=-5+ √12,5-5+√(25-(-5+√12,5+5)²)=-10+2√12,5,-5-5+√(25-(-5+5)²)=-5,0-5+√(25-(0+5)²)=-5,ає(-5;-10+2√12,5],{-5}
1
-
1
-
f¹orty+ten*2=sixty 10 цифр✓f[1;8],s[2;9] en*2=..00 en:50,n=0,e=0;5 e=5 f¹or+2t+1= six f=1,s=2 or+2t+1=1ix,o=8;9 o=9 r+2t=9+ ix,i=1×f=2,s=3 or+2t=99+ix≤113,ix≤14 i=1 or+2t=109+x≥113 o=9,r=7,t=8,x=4 y=6 29786+850*2=31486 f=3,s=4 or+2t=99+ix, i=1 or+2t=109+x x=2,o=9,r=7,t=7× f;s=(6;7) or+2t=99+ix≤113,i=1 or+2t=109+x,x=2;3;4 o;r;t=9,5,8×;×;9,5,8× f;s=(7;8) or+2t=99+ix≤ 113,i=1 r+2t=19+x,o=9 12+5=17×s=9
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
2√(7-4√3)=2(2-√3) √3-1✓ w=-0,5x-0,5y±√(-0,75x²-0,75y²-0,5xy+1/2) 0,5x²+xy+0,5y²-1/2±(x-y)√(-0, 75x²-0,75y²-0,5xy+1/2)≤0,≥-1
X+y+(-0,75x²-0,75y²-0,5xy+1/2)-⁰,⁵ (-1,5x²-0,5y²+1/2)=0 0=x⁴+2/3x³y+x²(4y²/3+1/3)+x(-y/3+2y³/3)+y⁴/3+1/12
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
A(1;4),B(xB;5-xB),C(xC;7xC-3)(xB-1)²+(1-xB)2=(xC-1)²+(7xC-7)² xB=±5(xC-1)+1 10=1,6(xB-1)² xB=1±2,5=3,5;-1,5 xC=1,5;0,5;0,5;1,5 y=(7xC-8+xB)/(xC-xB)(x-xB)+yB=-3x +12;1/3x+2 5/6;-3x+2;1/3x+7
1
-
1
-
1
-
1
-
{x=-y/2±√(1-3/4y²),z=-y/2±√(4-3/4 y²),3/4y²±1,5y√(1-3/4y²)=±(-1,5y± √(1-3/4y²))√(4-3/4y²);
117y⁴-120y²+16=0 y=±2√((5±2√3)/39) x+,z+,+ ✓ y=-2√((5+2√3)/39), +✓ y=2√((5-2√3)/39) x+,z- 13√3=±(-5,35+√3)+ -✓, 10+9√3=±(14-√3-6√(7-2√3))- +✓ x-,z+ 5±2√3-+3√(5±2√3)√(8-+2√3)=-+3√((5±2√3)(47-+2√3))-(11√3-+5) + -✓,- ✓ x-,z 10-9√3=±3(15+6√3) + -✓,±45=13√3 - +✓ {(√((5+2√3)/13)+√ ((8-2√3)/13);2√((5-2√3)/13);√((5+ 2√3)/13)+√((47-2√3)/13))} x+y+z=√(15+4√13)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x"+x'-2x=ft,x=e^kt,k²+k-2=0,k=(-1±√(1-4*2))/2[k=1,k=-2;x=c1e^t+c2e^-2t xp=c(t)(c1 e^t+c2e^-2t) c"(t)+c'(t)(3c 1e^t-3c2^-2t)/(c1e^t+c2e^-2t)=f(t)/(c1e^t+c2e^-2t),c '(t)=c3e^(-$(3c1e^t-3c2^-2t)/(c1e^t+c2e^ 2t))+e^(-3t+2/e^3t-2/(e^3t+c2/c1))$ft/(c1 e^t+c2e^-2t)*e^((3c1e^t-3c2^-2t)/(c1e^t+ c2e^-2t))dt x=c3$e^(-3t+2/e^3t-2/(e^3t+c 2/c1))+$e^(-3t+2/e^3t-2/(e^3t+c2/c1))$ft/(c1e^t+c2e^-2t)*e^((3c1e^t-3c2^-2t)/(c1e^t+c2e^-2t))dt x=c1e^t+c2e^-2t+c3$ e^(-3t+2/e^3t-2/(e^3t+c 2/c1))+$e^(-3t+ 2/e^3t-2/(e^3t+c2/c1))$ft/(c1e^t+c2e^- 2t)*e^((3c1e^t-3c2^-2t)/(c1e^t+c2e^-2t)) dt,0=c1+c2,c2=-c1,
A(e^3t+c2/c1)+Be^3t=1,{A+B=0,Ac2/c1=1;{A=c1/c2,B=-c1/c2; 3=c1-2c2+c3 e^(2-2/(1+c2/c1))=c1-2*c1+c3e^(2-2/(1-c1/c1))=3c1+c3∞,c3=0,c1=1,c2=-1 x=e^t-e^-2t+$e^(-3t+2/e^3t-2/(e^3t+c2/c1))$ft/(e^t-e^-2t)*e^((3e^t+3e^-2t)/(e^t e^-2t))dt
1
-
(a b)*(e f)=(ae+bg af+bh)
)c d) (g h). (ce+dg cf+dh)
[{b=0,a=0,c=0,[d=0,g=0;;{b=0,f=0, e=g-dg/c;{g=0,h=f-af/b,c=0;{g=0,h=f-af/b,e=0,[c=0,f=0;;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1,73V1,41*ln4/ln3=1,41*4*0,41/2/0,73=5,64*0,205/0,73=1,128/0,73=1,55.., 3^√3>4^√2
1
-
1
-
1
-
1
-
1
-
16x⁶-24x⁴+x³+9x²-1=0 96x(x⁵-x²+1/32x+3/ 16(=0[x=0,x=-0,4,(x-0,1)⁴+0,1(x-0,1)²& 1,616(x-0,1)-0,649=0;(z+0,01(6))³+0,163 (z+0,01(6))-0,044=0 z+1/60=0,212 z+1/60=-0,106±0,44i[z=0,195,z=-0,123+0,44i;y=1,263;-0,383 x=1,363;-0,283 {0;-0,4; 1,363;-0,283}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
х¹²-х⁹+х⁴-х+1=0 х¹¹-3/4х⁸+1/3х³-1/12=0 />х≤0 ..≤-1/12<0 [х=0,7,х¹⁰+0,7х⁹+0,49х⁸- 0,41х⁷-0,28х⁶-0,20х⁵-0,14х⁴-0,098х³+0,28х²+0,20х+0,14=0;-*+>х мин=(-0,657*0,7⁵+1) 0,7⁴+0,3>0 0/
1
-
х²+3ах-а²+1=0,2 корня хє[-3;0],х=(-3а±√ (9а²-4(-а²+1)))/2=(-3а±√(9а²+4а²-4))/2=-1,5а±√(13а²-4)/2,13а²-4>0,(а-√(4/13))(а+√(4/13))>0+°-°+>а,ає(-∞;-√(4/13)) U(√(4/13);∞),{-1,5a+√(13a²-4)/2≤0,-1,5a √(13a²-4)/2≥-3;{√(13a²-4)≤3a,√(13a²-4)≤ 6+3a;{13a²-4≤9a²,13a²-4≤9a²+36a+36;{-2 2a²-4≤0,4a²-36a-40≤0;{a²+2/11≥0,(a-10)(a+1)≤0+*-1*+10>a;{aєR,ає[-1;10];ає[-1; 10],ає[-1;-√(4/13))U(√(4/13);10].
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x²y''+xy'-y=xlnx (xu')²+x(xu')'-1,25=0 (xu')'/(xu')²+1/x=0,(xu')-¹/-1+ln|x|=c xu'=1/(ln|x| -c) xu'=c1:c1²-1,25=0,c1=±√1,25 [xu'=1/(ln|x|-c),xu'=±√1,25;[u=ln|ln|x|-c|+c1,u=± √1,25ln|x|+c1;[y=(ln|x|-c)c1,y=|x|^±√1,25 c1;yp=1/4xln²x-1/4xlnx xlnx=xlnx, y=c1ln|x|-cc1+1/4xln²x-1/4xlnx;c1|x|^±√1,25+1/4 xln²x-1/4xlnx
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
√(a²-9)+a=6 a[3;6] a²-9=a²-12a+36 a=15/4 {a1²+b²+14/25a1b=36,c1=a1*2/√5 ±√(225/16-a1²/5),c2=-a1+c1*4/√5, c3=1,2a1/√5±√(225/16-a1²/5)*8/5 ±(-4/5/√5a1±3/5√(225/16-a1²/5)), b=0,48a1±√(225/16-a1²/5)*16/5/√ 5±(-8/25a1±6/5/√5√(225/16-a1²/5))±√(225/16-(1,2a1/√5±√(225/16- a1²/5)*8/5±(-4/5/√5a1±3/5√(225/ 16-a1²/5)))²/5),a=0,5arccos(3/5); a1=15/4,b=15/4 c3 c -,c1 c + (15/4=6,15×;3,75✓) c1=3√5(+) R=15/4/2/√(1/5)=15/8√5
1
-
x=0,5/ay²+3/4a y=x²,0=x⁴-2ax+1,5a² 4x³- 2a=0,x=(0,5a)^(1/3) -*+>x min=-1,5*0,5^ (1/3)a^(1 1/3)+1,5a² -1,5*0,5^(1/3)*4/3a ^(1/3)-3a=0,[a=0,a^2=-4/27;+*0->a max=0 2 решения.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
$dx/x²/√(1+x²)=$±(u²-1)^-0,5duu/(u²-1)/u=$±(u²-1)^-1,5du=-+(u²-1)^-0,5/u-$±(u²- 1)^-0,5u^-2du=-1/√(1+x²)/x-0,5x/√(1+x²) ^3-...-x^(2n-3)/n!/(1+x²)^(n-0,5)-...+C
√(1+x²)=u,x=±√(u²-1),dx=±0,5(u²-1)^-0,5*2udu
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
log((3x-4)/(x+1))(2x²-3x)≥log((3x-4)/(x+1))(17x-20-3x²),{(3x-4)/(x+1)>0,(3x-4)/(x+1)≠1,2x(x-1,5)>0,-3x²+17x-20>0;{(x-4/3)/(x+1)>0,+°-1-°4/3+>x x≠5/2,x(x-1,5)>0,+°0-°1,5+>x (x-(-1 7+√(289-4*3*-20))/-6)(x-(17/6+√(2 89-240)/6)<0+°5/3-°4+>x;{хє(-∞;-1) U(4/3;+∞),х≠2,5,хє(-∞;0)U(1,5;+∞),хє (5/3;4)\/°-1\°0°4/3/°\1,5/°\1 2/3|/°\|2,5/\°4/>х;хє(1 2/3;2,5)U(2,5;4) log((3x-4)/(x+1))((2x²-3x)/(17x-20-3x²))≥0,[{(3x-4)/(x+1)<1,(2x²-3x)/(-3x²+17x-20)≤1;{(3x-4)/(x+1)>1,(2x²-3x)/(-3x²+17x-20)≥1;[{(2x-5)/(x+1)<0,(2x²-3x+3x²-17x+20)/-3/(x-5/3)/(x-4)≤0;{(x-2,5)/(x+1)>0,+°-1-°2,5+>х (5x²-20x+20)/-3/(x-5/3)/(x-4)≥0;[{(x-2,5)/(x+1)<0,+°-1-°2,5+>х(x-2)²/(x-5/3)/(x-4)≥0+°5/3*2-°4+>х;{хє(-∞;-1)U(2,5;+ ∞),(х-2)²/(х-5/3)/(х-4)≤0+°5/3-*2-°4+>х;[{хє(-1;2,5),хє(-∞;5/3)U{2}U(4;+∞)\-1°/\°5/3/*2/°2,5°4\>х,{xє(-∞;-1)U(2,5;+∞) хє(5/3;4);[хє(-1;5/3)U{2},хє(2,5;4);хє(-1;5/ 3)U{2}U(2,5;4)=>хє{2}U(2,5;4)
1
-
1
-
1
-
1
-
t²x'(t)+3tx(t)=t⁴lnt+1,x=x0(t)+xp(t) t2e^u (t)u'+3te^u(t)=0,u'=-3/t,u=-3ln|t|,x0=c1e^(- 3ln|t|)=c1|t|^-3,xp=lntEn=0∞ant^n+Em=0 ∞amt^m,1/tEn=0∞ant^n+lntEn=0 ∞ann t^(n-1)+Em=0,∞am*mt^(m-1)+3/t(lntEn =0∞ant^n+Em=0 ∞amt^m)=t²lnt+1/t²,E n=0∞(annt^(n-1)+3ant^(n-1))=t²,n=3, 3a0t^-1+a1+3a1+2a2t+3a2t+3a3t²+3a3t²=t²,{3a0=0,4a1=0,5a2=0,6a3=1;{a0=0,a1= 0,a2=0,a3=1/6.1/t1/6t³+Em=0∞ammt ^(m-1)+3/tEm=0∞amt^m=1/t²,Em=0∞ am(m+3)t^(m-1)=-1/6t²+1/t²,{a-1*2=1,a3* 6=-1/6;{a-1=0,5,a3=-1/36.xp=1/6t³lnt+0,5t ^-1-1/36t³,x=c1|t|^-3+1/6t³lnt+0,5t^-1-1/3 6t³
1
-
1
-
1
-
х≥1, 2-х=1-3√(х-1)+3(х-1)-(х-1)√(х-1), √(х-1)=(2-х-1-3х+3)/(-3-х+1),х-1=(-4х+4)²/(-х-2)², х³+4х²+4х-х²-4х-4=16х²+32х+16, х³-13х²-32х-20=0, (х-13/3)³+(-32-3*13²/3²)(х-13/3)+13³/27-(32+169/3)*13/3-20=0, х-13/3=(-2197/54+265*13/18+10+√((-40 37/54+201 7/18)²+(-265/3)³/27))^(1/3)+(-160 38/54+√((160 38/54)²-265³/27²))^(1/3),х=4 1/3+(-160 19/27+√11'539'184/54)^(1/3)+(-160 19/27-√11'539'184/54)^(1/3)=-6,34..,
169 265 160
*13 *13 *54
507 795 64
169 265 80
2197 3445|18 8640+38=8678
18 191. *8678
164 69424
162 60746
25 52068
18 69424
265 75'307'684
*265 -63'768'500
1825 11'539'184=16*
1590*721'199=16*23*37'957
530
70725
* 265
353625
144350
141450
15942125*4=63'768'500
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
sgn(x²-4x+1)=1-2x,[{x²-4x+1>0,1=1-2x;{x²-4x+1=0,0=1-2x;{x²-4x+1<0,-1=1-2x;[{1>0,x=0;{0,25-4*0,5+1=0,25-2+1=-0,75, x=0,5;{-2<0,x=1;
1
-
1
-
y^(0,5)+y=0 k⁰,⁵+1=0,k=1, y0=ce^x yp=En= 0;∞anx^n n=2,A2x²+(8/3/√πa2+a1,5)x¹,⁵+(a1+0,75/√πa1,5)x+(a0,5+ 2/√πa1)x⁰,⁵+ a0=x²+8/3/√πx¹,⁵{a2=1,a1,5=0,a1=0, a0,5= 0,a0=0;yp=x² y=ce^c+x²
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
[sinx=log4(a),sinx=2-2a;2 решения хє[π/2;5π/2] {(-1+log4(a))/log4(a)≥0+°1-*4+>a,(1+log4(a))/log4(a)≥0+*1/4-°1+>a;{a(0; 1)U[4;∞),a(0;1/4]U(1;∞);a(0;1/4]U[4;∞) 2-2a≥-1,≤1;a≤1,5,≥0,5;[x=arcsinlog4(a)(- 1)^n+πn,x=arcsin(2-2a)(-1)^n+πn;[ a[1; 4],a(1/4;1),a[0,5;1,5];ає(1/4;4]
1
-
1
-
1
-
{[{x=m+k,y=m-k,(m,k):(/)2;{x=m+k+ 1,y=m-k;1/4+n=a,[{(0;±1)(±1;0),n=0; a=1/4✓
tga=2sin0,5a√(1-sin²0,5a)/(1-2sin² 0,5a)✓ tg²a-4(tg²a+1)sin²0,5a+4(tg²a+1)sin⁴0,5a=0,sin0,5a=±√((tg²a+1±√(tg²a+1))/2/(tg²a+1))=±√(((-2cos(πxy) -1,5cos(2πx)-2cos(2πy)+6,5)²+1±√ ((-2cos(πxy)-1,5cos(2πx)-2cos(2πy)+6,5)²+1))/2/((-2cos(πxy)-1,5cos(2 πx)-2cos(2πy)+6,5)²+1))
1
-
[{a=0,x=1,y=-14;{[a(-=;0)U[1,75;4], a(0;4];x=(8±4√(4-a))/a,y=±4√(4-a)-6;{x=-2/(a-2),y=-2a/(a-2)-14. A=2,x=4±2√2,y=±4√2-6 a=4,(2;-6),(-1;-18) a=1,75,(8/7;-12)(8;0) a(-∞;0)U(0;1,75) a(-∞;0)U(0;1,75]U{2}U{4}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{у³-4у<3(х-3)²-1,у³-4у>-(х-4)²+2;(х-4)(х- 2,5)>0+°2,5-°4+>х хє(-∞;2,5)U(4;≠) {(y-4√3/3cis(1/3arccos(3√3/8)))(y-4√3/3 cis(1/3arccos(3√3/8)+2/3π))(y-4√3/3cis (1/3arccos(3√3/8)+4/3π))>0-°+°-°+>y, (y-4√3/3cis(1/3arccos(-3√3/16)))(y-4√3/3 cis(1/3arccos(-3√3/16)+2/3π))(y-4√3/3cis (1/3arccos(-3√3/16)+4/3π))<0-°+°-°+>y;{y(4√3/3cos(1/3arccos(3√3/8)+2/3π);4√3/3cis(1/3arccos(3√3/8)+4/3π))U(4√3/3cis(1/3arccos(3√3/8));∞),y(-∞;4√3/3cis(1/3arccos(-3√3/16)+2/3π))U(4√3/3cis(1/3arccos(3√3/8)+4/3πn);4√3/3cis(1/3arccos(3√3/8)));°-2,11°-1,67°-0,53°°0,25°1,86° 2,21>y 0/
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{|х-4|+3|у|=2,9у²+х²-8х+4(а+3)=0;{[{х-4+3у=2,х-4≥0,у≥0,{х-4-3у=2,х≥4,у<0,{-х+4+3у=2,х<4,у≥0,{-х+4-3у=2,х<4,у<0;(х-4)²+(3у)²=-4а+4;≥0 {[{у=2-х/3,х≥4,у≥0,{у=-2+1/3х,х≥4,у<0,{у=х/3-2/3,х<4,у≥0,{у=-1/3х+2/3,х<4,у<0;(х-4)²+(3у)²=-4а+ 4;а≤1 x≤6,y≤2/3 (6-4)²+(2/3-0)²=4+4/9=r², r=2√10/3 2√10≤-4a+4,a≤-0,5√10+1,R=2, 2≥-4a+4,a≥0,5, aє[0,5;-0,5√10+1]
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
ax=log²x≥0,a=0 1 решение,2logx*1/x=a, x=1,-*+>x logx0(2-logx0)=0,[x0=1,x0=e^2; a=4/e²,ає{0}U(4/e²;∞) 1 решение,ає{4/е²} 2 решения,ає(0;4/е²) 3 решения,а<0 0 решений
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
[x+0,5]+[x]=x⁶,{2x+0,5≥x⁶,2x-1,5≤x⁶;
{X⁶-2x-0,5≤0,x⁶-2x+1,5≥0;-5/3(1/3)¹/⁵-0,5<0,min=(54+19/26)/357>0 1,5⁶-3,5=7+57/64>0 x(-1;-0,5),x(1;1,5)[{x[-1;-0,5),×;{x[-0,5;0),×;{x[0;0,5),x=0;{x[0,5;1),x=1;{x[1;1,5),x=±2¹/⁶;{(0;2¹/⁶)}
1
-
d=(a+b)/c 0=c²-abc+(a+b) c=(ab±√(a²b²-4 a-4b))/2 a≤c≤d≤b c=1,a=1,{d=b,1=(b±√((b 2-√8)(b-2+√8)))/2;b(-∞;2-√8]U[2+√8;∞) 4≠-4 b(-∞;(2-2√(1+a³))/a²]U[(2+2√(1+a ³))/a²;∞) (3a²-4√(1+a³)-4-4a³)/a³=0 0=a²(a⁴-3/2a³+9/16a²+a-1,5),a≤1/4-(31/64-√(31²/64²+(-3/16)³/27))^(1/3)-(31+8√ 15)^(1/ 3)/4=-71/96[a=0,(a²-3/4a)²+a-1,5 =0;\0(-1,5)*/3/8(-1 351/4096)*\3/4(-3/ 4)*/ a=-1,5;1,5 -1,50-*1,5->a,b≥1 b[5;∞)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{z=-4(x+y)/x/y,(y+z)/x/y/z=-1/24,(x+z)/x/y/z=1/24;{z=-4(x+y)/x/y,10x³-24,5x²+171 x-108+190/x=±(8 1/3x+15-60/x)√(25/36 x⁴-5/3x³+17x²-8x+16) y=(5/2x²-3x+12±3 √(25/36x⁴-5/3x³+17x²-8x+16))/x;{[x=-0,7 43,x=0,714;[y=-43,92,y=1,912,y=33,678,y= -2,494;[z=5,475,z=3,292,z=-5,721,z=-3,99 8;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
abcd=50(a+b+c+d),1≤50≤9⁴/9/4=9³/4=729/4=182,25 a=1,bcd=50(1+b+c+d),9³/28=729/28=26 1/28,0/ 2*9³/29=2*72 9/29=1458/29=50 8/29,2b9²/(2+b+18)= 162b/(b+20)≥50,162b≥50b+1000,b≥100 0/112=8 104/112,1*9³=729,50*28=1400, 3b9²/(3+b+2*9)=243b/(b+21)≥50,243b≥ 50b+1050,b≥1050/193=5 85/193,3*6cd= 50(3+6+c+d),d(18c-50)=450+50c,d=(50c+460)/(18c-50)=2+(14c+560)/(18c-50)\ >2 2/9 2+(14c+560)/(18c-50)=3,(14c+56 0)/(18c-50)=1,14c+560=18c-50,c=-610/-4 =152,5>9,≥2+686/122=7 76/122,2+(14c +560)/(18c-50)=8,(14c+560)/(18c-50)=6, 14c+560=108c-300,c=-860/-94=9 14/94 3*6*9²/27=18*81/27=54,3*7cd=50(3+ 7+c+d),d=(500+50c)/(21c-50)=2 8/21+ (500+2500/21)/(21c-50)\>2 8/21
200+350/9=238 8/9
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{-0,25a(n+1)+0,25an=bn,a(n+2)=-6a(n+1)-9an; a1=-1,b1=2 a3=-6a2-9a1=-6a2+9, 0,25a2-0,25=2,a2=-9,a3=63,q=-6-9/q q²+6q+9=0,q=-3,a4=81*-3 2/3 an=(-3)^n (1/3-2/3-2/7-2 8/21..),bn=(-3)^n(1/3-2/3 2/7-2 8/21+...+0,75..)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
a1³+a2³+..+an³=2S²n,a1³=2a1²,[a1=0, a1=2;[a2=0,a2=2;a2=0,a2=4,a2=-2[an=0, 1 число =2, остальные 0,an=-a(n-1),an=2 a(n-1),an=0;
1
-
1
-
{c=-a-b,a<1/2,b<1/2,-a-1/2<b,x²+(b-1)/ax-1-b/a≥0,x²+b/(a-0,5)x+(- a-b-0,5)/(a-0,5)≥0,a>0;(a+b/2)²≤b/2-1/4,{b=1/2,a=-1/4;2/3>0
-4040ab=505
1
-
1
-
1
-
x=(1±√(4y²-3))y/2/(y²-1)≤(y/2+y²)/(y²-1)= 1+(0,5y+1)/(y²-1)(-0,5y²-0,5-2y)/(y²-1)²=0, y=-2±√3-+>y max=1-0,25(√3+2)=-0,2 5√3+0,5=0,..1+√3/4-0,5=√3/4+0,5=0,8..\> (y/2-√(4y²-3)y/2)/(y²-1)'=-0,5((y²+1)√(4y ²-3)-5y²+3)/(y²-1)²=0,(y²+1)√(4y²-3)=5y²-3,(y²+1)²(4y²-3)=(5y²-3)²,y≥√(3/5),y≤-√0,6; 4y⁶-3y⁴+8y⁴-6y²+4y²-3-25y⁴+30y²-9=0,4y⁶-20y⁴+28y²-9=0,(y²-5/3)³-4/3(y²-5/3)+50 3/108=0,y²-5/3=(-503/216+√(503²/216²+(-4/3)³/27))^(1/3)+(-503/216-√(439*7)/24)^(1/3),y=±√(5/3+(-503/216+√(503²/216²+(-4/3)³/27))^(1/3)+(-503-9√(439* 7))^(1/3)/6)*-1+*1->y max=0/0=(0,5-(4y ²-3)^-0,5*2y²-(4y²-3)⁰,⁵*0,5)/2/y=(0,5-2*1 -0,5)/2=-2/2=-1,min=0/0=(0,5-2-0,5)/2/-1 =-2/-2=1 учитывая значения экстремумов функции,получаем, что других корней нет.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
y'/x+y'²-y/x=0 (2(y+1/x)⁰,⁵)'+(1/x+1/x²)/√(y+1/x)=±x-⁰,⁵ (y+1/x)⁰,⁵=u 2uu'-+x-⁰,⁵u=- 1/x-1/x² [u=0,u=±x⁰,⁵+c; n?0,5,n=-0,5[{a(- 1,5)=0,a(-0,5)=-1,..,{a(-1,5)=0,a(- 0,5)=1,..; u=-+x-⁰,⁵[y=-1/x,y=x±2cx⁰,⁵-1/x+c2,y=0;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{0,5log|x|2>1,x²>0,x²≠1;{(0,5-log(2)|x|)/log(2)|x|>0,x≠0,x≠±1;{(log(2)|x|-0,5)/log(2)|x|<0,+1°2⁰,⁵-°+>|x| |x|є(-∞;1)U(2⁰,⁵;+∞) хє(-∞;-2⁰,⁵)U(-1;1)U(2⁰,⁵;+∞) хє(-∞;- 2⁰,⁵)U(-1;0)U(0;1)U(2⁰,⁵;+∞)
1
-
2021^(sin⁴x+cos⁴(x-π/4))=(2020+(sinx+ cosx)²-sin2x)⁰,²⁵ 2021^(sin⁴x+(cosx√2/2 +sinx√2/2)⁴)=(2020+sin²x+2sinxcosx+cos²x-2sinxcosx)⁰,²⁵ 2021^(sin⁴x+0,25(cos x+sinx)⁴)=2021⁰,²⁵,(sin²x+0,5(cosx+sin x)²)²-sin²x(cosx+sinx)²=0,25,(sin²x+0,5 (cos²x+2cosxsinx+sin²x))²-sin²xcos²x-2cosxsin³x-sin⁴x-0,25=0,(0,5+sin²x+sin2x)²- sin²x+sin⁴x-sin2xsin²x-sin⁴x-0,25=0,0,25+sin⁴x+sin²2x+sin²x+sin2x+2sin²xsin2x-sin²x-sin2xsin²x-0,25=0,sin⁴x+4sin²x(1-sin²x)+sin²x+sin2x*(cos²x+2sin²x)=0,[sinx=0, sin³x+4sinx-4sin³x+sinx+2cosx(1+sin²x)=0,[x=πn,-3sin³x+5sinx+2cosx+2cosxsin ²x=0;sin²x(-3sinx+2cosx)+√29sin(x+arc cos(5/√29))=0,-3sin³x+5sinx=±2√(1- sin²x)(1+sin²x),9sin⁶x-30sin⁴x+25sin²x=4 (1-sin²x)(1-2sin²x+sin⁴x),9sin⁶x-30sin⁴x +25sin²x-4(1-2sin²x+sin⁴x-sin²x+2sin⁴x-sin⁶x)=0,sin⁶x-30sin⁴x+25sin²x-4+12sin²x- 12sin⁴x+4sin⁶x=0,5sin⁶x-42sin⁴x+37sin²x-4=0,sin²x=y,y³-8,4y²+7,4y-0,8=0,(y-2,8)³-16,12(y-2,8)-23,984=0,y-2,8=(23,984/2+√(11,992²+(-16,12)³/27))^(1/3)+(1 1,992-√(-12,665'734))^(1/3), поэтому у нас 3 корня,y=2,8+√(16,12³/27)^(1/3) cos(arccos(11,992/√(16,12³/27))/3+2πn/3)*2,[y=7,41..>1,y=0,1258..≤1,≥0,y=0,85 7..≤1,≥0;[sin²x=0,1258,sin²x=0,857..;[sinx =±√0,1258,sinx=±√0,857;[x=arcsin±√0 ,1258+2πn,x=π-arcsin±√0,1258+2πn,x=arcsin±√0,857+2πn,x=π-arcsin±√0,857+2πn;
3224 259,8544 4188,842928/27=
1612. *16,12 =155 240183/2
9672. 5197088 7/62500
1612 2598544
259,8544 15591264
2598544
4188,842928
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(((x-1)²-3)(x+2)⁰,⁵-(x-1)²)(x-1)-²(x+2) ⁰,⁵=0 x(1+√3;∞), x⁵-3x⁴-4x³+2x²+24x+7=0 5((x-0,6)⁴-3,36(x-0,6)²-2,368(x-0,6)+4,4592)=0 (z-0,56)³-1,25(z-0,56)-1,371'194=0 z=0,56+(0,685597+√(0,685597²-1,25³/27))¹/³+(..-..)..;0,56-(0,685597+√ (0,685597²-1,25³/27))¹/³/2-(..-..)..±√ (3/4((0,685597+√(0,685597²-1,25 ³/27))¹/³+(..-..)..)²-1,25)i x=0,6+√(0,56+(0,685597+√(0,685597²-1,25³/27))¹/³+(..-..)..)±2√(0,5√( 0,9364-0,56((0,685597+√(0,685597²-1,25³/27))¹/³+(..-..)..)+((0,685597 +√(0,685597²-1,25³/27))¹/³+(..-..)..) ²)+0,28-(0,685597+√(0,685597²-1,2 5³/27))¹/³/4-(..-..)..)+*1,24..-2,80..*+>x max=28,..>0 min=-10,..<0 x=✓3,3;×2,4;-0,3×-*3,3+>x min=4,6-2*2,3=0✓{(3,3;3,3;3,3)}
1
-
{2х1+х2+8х3=-11,3х1-19х2+23х3=36,х1+4х2-3х³=5;{2х1+х2+8х3=-11,41/3х2-22/3 х3=-35,-7х2+14х³=-21;{2х1+х2+8х3=-11, 41/3х2-22/3х3=-35,20х³=-76;{х1=9,6,х2= -4,6, х3=-3,8;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(√(x²-ax+8)+√(x²-ax+6))^x+(2/(√(x²-ax +8)+√(x²-ax+6)))^x=2^1,5x,(√(x²-ax+8 )+√(x²-ax+6))^2x-2^1,5x(√(x²-ax+8)+√(x²-ax+6))^x+2^x=0,(√(x²-ax+8)+√(x²-ax+6))^x= (2^1,5x±√(2^3x-4*2^x))/2,[(√(x²-ax+8)+ √(x²-ax+6))^x=2^(1,5x-1)+2^(x/2-1)√(2 ^2x-4),(√(x²-ax+8)+√(x²-ax+6))^x=2^(1,5x- 1)-2^(x/2-1)√(2^2x-4)>0;[{a=-((0,5(2^(1,5x-1)+2^(x/2-1)√(2^2 x-4))^(2/x)-x²-7)²-x⁴-14x²-48)/(2x³+14x+ 0,5x(2^(1,5x-1)+2^(x/2-1)√(2^2x-4))^(2/x)-x³-7x),a≥-0,5(2^(1,5x-1)+2^(x/2-1)√(2^2 x-4))^(2/x)/x+x+7/x,x≥1,{a=-0,25(((2^(1,5x-1)-2^(x/2-1)√(2 ^2x-4))^(2/x)-2x²-14)²-x⁴-14x²-48)/x/(2x²+14+2^(1,5x-1)-2^(x/2-1)√(2^2x-4)),a≥-2^(1-4/x)(2^x-√(2^2x-4))^(2/x)/x+x+7/x,x≥1;
1
-
1
-
Декабрь,дека,каре,бар,раб,дар,краб,брак,кеда,река,бак
1
-
1
-
1
-
{d=2-a-b-c,c=(-a-b+2±√(4-2ab+4a+4b-3a²-3b²))/2,
b³-4ab-2a²-2b²+a³+ab²+a²b+2ab-2=0,ab(&2a+ab+a²&2b+b²)=4; {a+b=x,ab=y;{[y=1,(x³-2x²-2)/(2x-2)= y;[x=0,x=1±√3,(x-1 1/3)³-20/3(x-1 1/ 3)-3 5/27=0;x-1 1/3=(43+√(43²-20³)) ¹/³/3+(..-..)..=2/3√20cos(1/3arccos (43/200√5)+2/3πn) x=4/3+2/3√20cos(1/3arccos(43/ 200√5)+2/3πn),y=((4/3+2/3√20cos(1/3arccos(43/200√5)+2/3πn))³-2 (4/3+2/3√20cos(1/3arccos(43/200 √5)+2/3πn))²-2)/(1/3+2/3√20cos (1/3arccos(43/200√5)+2/3πn))/2 {a=2/3+1/3√20cos(1/3arccos(43/ 200√5))-+√((17/18-2/3√20cos(1/3arccos(43/200√5))+40/9cos²(1/3 arccos(43/200√5))))/(1/3+2/3√20 cos(1/3arccos(43/200√5)))), b=2/3+1/3√20cos(1/3arccos(43/2 00√5))±√((17/18-2/3√20cos(1/3ar ccos(43/200√5))+40/9cos²(1/3arc cos(43/200√5)))/(1/3+2/3√20cos (1/3arccos(43/200√5)))); c=(2/3-2/3√20cos(1/3arccos(43/ 200√5)+2/3πn)±√(-4(17/18-2/3√20 cos(1/3arccos(43/200√5)+2/3πn)+ 40/9cos²(1/3arccos(43/200√5)))/(1/3+2/3√20cos(1/3arccos(43/20 0√5)))+28/3+8/3√20cos(1/3arcco s(43/200√5)))-8(2/3+1/3√20cos (1/3arccos(43/200√5)))²))/2, d=(2/3-2/3√20cos(1/3arccos(43/ 200√5)+2/3πn)-+√(-4(17/18-2/3√20cos(1/3arccos(43/200√5)+2/3πn)+40/9cos²(1/3arccos(43/200√5)))/(1/3+2/3√20cos(1/3arccos(43/20 0√5)))+28/3+8/3√20cos(1/3arcco s(43/200√5)))-8(2/3+1/3√20cos (1/3arccos(43/200√5)))²))/2
1
-
-(1+x²)-¹,⁵x+(1+xy)-¹,⁵y=0+*->x [x=y,{x=0,y=0;{x=y,x=±√2; {-y⁷/9-((7/54y³+ 1,5/y+√((7/54y³+1,5/y)²+8/27²y⁶))¹/³ +(..-..)..)²y⁵+(2/3y⁶+3y²+1)((7/54y³+1 ,5/y+√((7/54y³+1,5/y)²+8/27²y⁶))¹/³+(..-..)..)-y³+2/3y=0,x=-y/3+(7/54y³+1, 5/y+√((7/54y³+1,5/y)²+8/27²y⁶))¹/³ +(..-..)..; max=0✓
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
f(x)=10^(x/50)-4*10^(x/100)-3*10 ^(-x/100)+12*10^(-x/50) f'(x)=ln10(10^(x/25)+2*10^(3x/100)+1,5*10^(x/100)-12)*10^(-x/50)/50=0 (10^(x/100)+0,5)⁴-1,5 (10^(x/100)+0,5)²+2,5(10^(x/100) +0,5)-12 15/16=0 (z-0,25)³+51/16(z-0,25)+183/256=0 z=0,25+(-183+√357'921)¹/³/8+(.. ..)..;0,25-(-183+√357'921)¹/³/16-(.. -..)..±√(3/4((-183+√357'921)¹/³/8+(..-..)..)²+51/16)i x=100lg(-0,5-√(0, 25+(-183+√357'921)¹/³/8+(.. -..)..)+2√(0,5√(13/4-0,25((-183+√357'92 1)¹/³/8+(..-..)..)+((-183+√357'921)¹/³/8+(..-..)..)²)+1/8-(-183+√357'921) ¹/³/32-(..-..)..))*+>x min=(-0,5-√(0, 25+(-183+√357'921)¹/³/8+(.. -..)..)+2√(0,5√(13/4-0,25((-183+√357'92 1)¹/³/8+(..-..)..)+((-183+√357'921)¹/³/8+(..-..)..)²)+1/8-(-183+√357'921) ¹/³/32-(..-..)..))²-4*(-0,5-√(0,25+(-183 +√357'921)¹/³/8+(.. -..)..)+2√(0,5√(1 3/4-0,25((-183+√357'92 1)¹/³/8+(.. -..)..)+((-183+√357'921)¹/³/8+(.. -..)..)²)+1/8-(-183+√357'921)¹/³/32- (..-..)..)-3/(-0,5-√(0,25+(-183+√357'9 21)¹/³/8+(.. -..)..)+2√(0,5√(13/4-0,2 5((-183+√357'921)¹/³/8+(..-..)..)+((- 183+√357'921)¹/³/8+(..-..)..)²)+1/8- (-183+√357'921)¹/³/32-(..-..)..)+12/ (-0,5-√(0, 25+(-183+√357'921)¹/³/8 +(.. -..)..)+2√(0,5√(13/4-0,25((-183+ √357'92 1)¹/³/8+(..-..)..)+((-183+√3 57'921)¹/³/8+(..-..)..)²)+1/8-(-183+√ 357'921)¹/³/32-(..-..)..))² 0/
1
-
1
-
1
-
1
-
1
-
3х²-4|х²-1|+х-1=0,[{х²-1≥0,-х²+х+3=0;{х²-1<0,7х²+х-5=0;[{(х-1)(х+1)≥0+*+>х, х=(-1±√(1 -4-1*3))/-2;{(х-1)(х+1)<0+ **+>х,х=(-1±√(1-4*7 *-5))/14;[{хє(-∞;-1]U [1;∞),[x=1/2-0,5√13,x=0,5+0,5√13;{хє(& 1;1),[х=-1/14+√141/14,х=-1/14-√141/14;[х=0,5-0,5√13,х=0,5+0,5√13,х=-1/14+√141/14,х=-1/14-√141/14.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
-log(x/6)(lg√(6-x)/lgx)>lg(|x|/x),{x/6>0,x/6≠1,√(6-x)>0,x≠1,|x|/x>0;{x>0,x≠6,х≠1,x <6,x>0; хє(0;1)U(1;6) -log(x/6)(lg√(6-x)/lgx)>0,log(x/6)(lg√(6-x)/lgx)<0,lg√(6-x)/lgx>0,1-°+°5->x хє(1;5),=>хє(1;5)
1
-
1
-
1
-
(-2х+9)³=(х+3)², -8х³+3(-2х)²*9+3(-2х)*9²+9³-х²-6х-9=0, х³-107/8х²+492/8х-9*10=0, (х-107/24)³+(61,5-3*107²/24²)(х-107/24)-90+107³/24³+(61,5-59 1 21/192)*107/24=0, х-107/24=(45-107³/24³/2-107/48*1 167/192+√((45-1073/24³/2-107/48*1 167/192)²+(1 167/192)³/27))^(1/3)+(45-107³/24³/2-107/48*1 167/192-√((45-1073/24³/2-107/48*1 167/192)²+(1 167/192)³/27))^(1/3), х=4 11/24+(45-107³/24³/2-107/48*1 167/192+√((45-1073/24³/2-107/48*1 167/192)²+(1 167/192)³/27))^(1/3)
107+(45-107³/24³/2-107/48*1 167/192-√((45-1073/24³/2-107/48*1 167/192)²+(1 167/192)³/27))^(1/3),+*- Макс. √(4 11/24+(45-107³/24³/2-107/48*1 167/192+√((45-1073/24³/2-107/48*1 167/192)²+(1 167/192)³/27))^(1/3)
107+(45-107³/24³/2-107/48*1 167/192-√((45-1073/24³/2-107/48*1 167/192)²+(1 167/192)³/27))^(1/3)+3)+(9-2(4 11/24+(45-107³/24³/2-107/48*1 167/192+√((45-1073/24³/2-107/48*1 167/192)²+(1 167/192)³/27))^(1/3)
107+(45-107³/24³/2-107/48*1 167/192-√((45-1073/24³/2-107/48*1 167/192)²+(1 167/192)³/27))^(1/3)))^(1/4)>√3, корни существуют, минимальное значение:х=-3, 0+√√(9-2(-3))>√√9=√3, х=4,5, √(4,5+3)=√7,5>√3, хє[-3;4,5]
107
749
107
11449|192
960 59
1849
1728
121
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
ab(a+b+2)/(ab-1) b(ba²-2a-b-2)/(ab-1)²= 0,a=(2±√(4-4b(-b-2)))/2/b=(1±√(b²+2b+ 1))/b[a=(b+2)/b,a=-1;+*+>a min=(b+2)/b*b(1+2/b+b+2)/((b+2)/b*b-1)=(b+2)(b²+3b+2)/b*(b+2-1)=(b+2)(b+1)(b+2)/b*(b+1)=b³+13b+4/b+6b²+12,3b²+13+4 b^-2+12b=0,3b⁴+12b³+13b²-4=0,b=-1,3b³+9b²+4b-4=0,(b+1)³-5/3(b+1)-2/3=0,b+ 1=(1/3+√(1/9+(-5/3)³/27))^(1/3)+(1/3- √(-44/3⁶))^(1/3),b=-1+2√(5/9)cos(arccos(9/√(125))/3+2πn/3),+*-1-*-√3/2;-0,5+ *0;-0,5-*√3/2;1+>b min=(-1+2√(5/9)co s(arccos(9/√(125))/3)³+13(-1+2√(5/ 9)cos(arccos(9/√(125))/3)+4/(-1+2√ (5/9)cos(arccos(9/√(125))/3)+6(-1 +2√(5/9)cos(arccos(9/√(125))/3)²+12
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
sin(x+arccos(2/√4,25))>-0,5/√4,25 [x+arccos(2/√4,25)>-arcsin(0,5/√4,25)+2π n,x+arccos(2/√4,25)<π-arcsin(-0,5/√4,25) +2πn;[x>-π/2+2πn,x<π/2+2arcsin(0,5/√4,2 5)+2πn.
1
-
1
-
1
-
1
-
1
-
@snowmaiden3048 у"-ху'-у=0, (e^u*u'²+e^uu'u'')-xе^u*u'-e^u=0,u'²+u'u''-xu'-1=0, u'=-$(u'-x-1/u')dx=-u+x²/2+$dx/u'+c, u'+u-$dxu^(-1)(u')'=x²/2+c, u=ax²+bx+c, 2ax+b+ax²+bx+c-$dx/(2ax+b)=0,5x²+c, ax²+(2a+b)x+b+c-ln|x+b/2/a|/2/a=0,5x²+c, a=0,5, b=-2*0,5=-1,y=e^(0,5x²-x+c)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
$(0;∞)|sint|e^-tdt=e^-t(-0,5sint-0,5cost)|(2πn;π+2πn)+e^-t(0,5sint+0,5cost)|(π+2π n;2π+2πn)=e^(-π-2πn)(0-0,5*1)-e^(-2πn)(0-0,5*1)+e^(-2π-2πn)(0+0,5)-e^(-π-2πn)(0+0,5*-1)=(e^-π+0,5+0,5e^(-2π))/(1-e^( 2π)),n≥0
e^-t(c1sint+c2cost)'=-e^-t(c1sint+c2cost)+e^-t(c1cost-c2sint){-c1-c2=1,-c2+c1=0;{c1=-0,5,c2=-0,5;{-c1-c2=-1,-c2+c1=0;{c1=0,5,c2=0,5.
1
-
1
-
1
-
x⁵-5x³+5x=a⁵+1/a⁵ x³(x²-5)+5x-a⁵-1/a⁵=0, 5x⁴-15x²+5=0,x²=(15±√(15²-4*5*5))/10 [x²=1,5+0,5√5,x²=1,5-0,5√5;[x=±√(1,5+0,5 √5),x=±√(1,5-0,5√5);+*√(1,5+0,5√5)--√(1 ,5-0,5√5)*+*√(1,5-0,5√5)-√(1,5+0,5√5)*+>x max=-2,5√5-5,5+2,5√5+7,5=2,min=( √1,25+0,5)⁵-5(-√1,25+0,5)³+5(-√1,25+0,5)=5/2√5+11/2,max=-2,5√5-5,5,min=-2 a⁵+ 1/a⁵є(-∞;-2]U[2;∞), 1реш.,если а⁵+1/а⁵>2,5√5+5,5 (а¹⁰-(2,5√5+5,5)а⁵+1)/а⁵>0,(а⁵-(1,25√5+2,75+√(57,5+27,5√5)/2))(а⁵ (1,25√5+2,75-√(57,5+√5*27,5)/2))/а⁵>0, 0°+°..-√-°...+√+>а ає(0;(1,25√5+0,75-√(5 7,5+√5*27,5)/2)⁰,²)U((1,25√5+0,75+√(5 7,5+√5*27,5)/2)⁰,²;∞),2реш.а{(1,25√5+0 ,75-√(5 7,5+√5*27,5)/2)⁰,²;(1,25√5+0,75+ √(57,5+√5*27,5)/2)⁰,²},3 реш.а⁵+1/а⁵>-2, 5√5-5,5,(а¹⁰+(2,5√5+5,5)а⁵+1)/а⁵>0,(а⁵-(- 1,15√5-2,75+√(57,5+27,5√5)/2))(а⁵-(-1, 25√5-2,75-√(57,5+27,5√5)/2))/а⁵>0,(а-(-1, 25√5-2,75-√(57,5+27,5√5)/2)⁰,²)(а-(-1, 25√5-2,75+√(57,5+27,5√5)/2)⁰,²)/а⁵>0 ..-√..-°-..+√..+°0-°+>а ає((-1,25√5-2,75-√ (57,5+27,5√5)/2)⁰,²;(-1, 25√5-2,75+√(57 ,5+27,5√5)/2)⁰,²)U(0;∞),ає(-∞;0)U((1, 25√5+2,75-√(57,5+27,5√5)/2)⁰,²;(1,25√ 5+2,75+√(57,5+27,5√5)/2)⁰,²),ає((-1,25 √5-2,75-√(57,5+27,5√5)/2)⁰,²;(-1,25√5 2,75+√(57,5+27,5√5)/2)⁰,²)U((1,25√5+ 2,75-√(57,5+27,5√5)/2)⁰,²;(1,25√5+2,75+ √(57,5+27,5√5)/2)⁰,²),4реш.a⁵+1/a⁵=-2,5 √5+5,5,a¹⁰+(2,5√5-5,5)a⁵+1=0,a⁵=(-2,5√5+5,5±√((2,5√5-5,5)²-4*1))/2=-1,25√5+2,75 ±√(57,5-27,5√5)/2 aє{(-1,25√5+2,75±√(5 7,5-27,5)/2)⁰,²},5реш.a⁵+1/a⁵є(-2;2) 0/.
1
-
1
-
1
-
1
-
1
-
1
-
(x²-6x+a²+2a)/(2x²-ax-a²)=0,2 разл.реш. {х=(6±√(36-4(а²+2а)))/2,2х²-ах-а²≠0;{х=3 ±√(-а²-2а+9),х≠(а±√(а²-4*2*а²))/4=а/4± √9а/4;{х=3±√(-а²-2а+9),[х≠а,х≠-0,5а;-а²-2 а+9>0,(а-(2+√(4-4*-1*9))/-2)(а-(2-√4 0)/-2)<0,-1-√10+°-1+√10-°+>а,ає(-1-√10; 1+√10),3+√(-а²-2а+9)=а,√(-а²-2а+9)=-3 +а,{-а²-2а+9=9-6а+а²,-3+а≥0;{-2а²+4а=0, а≥3;{-2а(а-2)=0,а≥3;{[а=0,а=2,а≥3;0/3+√ (-а²-2а+9)=-0,5а,√(-а²-2а+9)=-3-0,5а≥0,{-а²-2а+9=9+3а+0,25а²,-3-0,5а≥0;{-1,25а²-5а=0,а≤-6;{[а=0,а=-4;а≤-6;0/ 3-√(-а²-2а+9)=а,√(-а²-2а+9)=3-а,а=0;2 3-√(-а²-2а+9)=-0,5а,√(-а²-2а+9)=3+0,5а,а=0;-4 ає(-1-√10;-4)U(-4;0)U(0;2)U(2;-1+√1 0)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
х²+2а=х+|х²-а|,[{х²-а≥0,х²+2а=х+х²-а;{х²-а<0,х²+2а=х-х²+а;[{(х-√а)(х+√а)≥0,+*+>х х=3а;{(х-√а)(х+√а)<0,+*+>х 2х²-х+а=0;[{хє(-∞;-√а]U [√a;+∞),x=3a;{xє(-√а;√а),х=(1±√(1-4*2 а))/4;[{а≥0,хє[√a;+∞),x=3a;{а<0,х=3а;{хє(-√а;√а),х=1/4±√(1-8а)/4,а ≥0,1-8а≥0,а≤1/8,√а>1/4+√(1-8а)/4,√а -1/4>√(1-8а)/4,а-0,5√а+1/16>(1-8а)/16, 1,5а-0,5√а>0,√а(√а-1/3)>0,0°-°1/9+>а ає(1/9;+∞),ає(1/9;1/8],{1/4-√(1-8а)/4>-√а,1/4-√(1-8а)/4<√а;{√(1-8а)/4<1/4+ √а,[{1/4-√(1-8а)≥0,1/16-√(1-8а)/8+(1-8а)/16<а;{1/4-√(1-8а)/4<0,а≥0;
{-1,5а<√а/2,[{15/128≤а,√(1-8а)/8>-1,5а+1/8;{а<0,а≥0;-13/256
{а>0,[а>15/128;0/;ає(15/128;+∞)
3а≥√а,√а(3√а-1)≥0,√а(√а-1/3)≥0+*0-*1/9+>а
[{ає{0}U[1/9;+∞),x=3a;{а<0,х=3а;[х=1/4+√(1-8а)/4,ає(1/9;1/8]; х=1/4-√(1-8а)/4,ає(15/128;1/8];\*0*|1/9/*|15/128/'*1/8/>a ає(15/128;1/8] 0/
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
f:Z=>Z, f(2a)+2f(b)=f(f(a+b)), f(x)=€m=0 n amx^m, €m=0 n am(2a)^m+2€m=0 n amb^m=€m=0 n am(€m=0 n am(a+b)^m)^m, a0+a1*2a+..+an(2a)^n+2 a0+2a1b+..+2anb^n=a0+a1(€m=0 n am(a+b)^m)+...+an(€m=0 n am(a+b)^m) ^n, 2a0+2a1(a+b)+..+2an(2^(n-1)a^n+b ^n)-a0-a1(a0+a1(a+b)..+an(a+b)^n)-..-a n(a0+a1(a+b)+...+an(a+b)^n)^n=0, {a0-a1 a0-...-ana0^n=0, 2a1-a1²-..-an(n-1)na0a1= 0,..., -an*an^n=0, {{a0=0, 1-a1-..-ana1^ (n-1)=0; {a1=0, 2-a1-...-an(n-1)a0^ (n-1)=0; ...{an=0; {{a0=0, 1-a1-..a(n-1)^n=0; {a1=0, 2-a1-...-a(n-1)(n-2)(n-1)a0=0; ...{-a(n-1)*a(n-1)^(n-1)=0,{an=0;[a1,..,an=0; f(x)=0,
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
0,25/√(0,5+0,5√17)(1/((x+2-√(0,5+0,5√17))²+0,5√17-0,5)-1/((x+2+√(0,5+0,5√17))²+0,5√17-0,5)) 0,25/√(0,5+0,5√17)(arctg((x+2-√(0, 5+0,5√17))/√(0,5√17-0,5))/√(0,5√17 -0,5)-arctg((x+2+√(0,5+0,5√17))/√(0, 5√17-0,5))/√(0,5√17-0,5))+c
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
4/3=x/(5-x), 20/3-4/3*x=x, x=-20/3/(-7/3?=20/7, 5-20/7=15/7 4²=CO²+(20/7)²-2C O*20/7*cos/_AOC, 3²=CO²+(15/7)²-2CO 15/7*cos(180°-/_AOC), cos/_AOC=(CO² +400/49-16)/CO/40*7, cos/_AOC=(9-CO ²-225/49)/30*7/CO, (CO² +400/49-16)/CO/40*7=(9-CO ²-225/49)/30*7/CO, CO²+(400-490-294)/16=(-CO²+216/49) 4/3, CO²+(-90-294)/16+4/3*CO²-72/49 4=0,CO²=(384/16+288/49)/(7/3)= (192/8+288/49)/7*3=(24+288/49)/7*3=(216+960+288)/343*3=1464/343*3 =4392/343, CO=√(4392/343) R=√(4392 /343)/√2=√(2196/343) x=15/7-2√(549 7)/49=15/7-2*3/49*√(61*7)
1
-
1
-
1
-
{b=(5-ax)/y,y=(10-ax²)/(5-ax), x=(6a²+6 15a+300)(7a-15)/a/(101a³-564a²+595a+ 75),[a=0,a=-205,12,a=-50,6,a=-1,76,a=-0,49, a=4,63*10-⁵,a=2,14; {(-205,12;2,29;-0,001; 2,09)(-50,6;2,90;0,0077;1,86)(-1,76;3,91; 3,63;2,91)(-0,49;2,50;-0,0094;2)(4,63*10-⁵; -5,43*10-⁵;-1295515,49;-1195'833,26)(2,14;2,37;0,063;2,05)} ax⁵+by⁵=91,32;64, 56;-293,38;80;3,02*10²⁶;85,81
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
2/log(2)(2x-2)+3/log(2)(4x-4)≤8/(log(3) 27+log(2)(x-1)),{2x-2>0,4x-4>0,x-1>0;{x>1,x>1,x>1;хє(1;+∞) 2/(log(2)(x-1)+1)+ 3/(log(2)(x-1)+2)-8/(3+log(2)(x-1))≤0, (2(log(2)(x-1)+2)(log(2)(x-1)+3)+3(log(2)(x-1)+1)(log(2)(x-1)+3)-8(log(2)(x-1)+1)(log(2)(x-1)+2))/(log(2)(x-1)+1)/(log(2)(x-1)+2)/(log(2)(x-1)+3)≤0,(2log²(2)(x-1)+10log(2)(x-1)+12+3log²(2)(x-1)+12 log(2)(x-1)+9-8log²(2)(x-1)-24log(2)(x-1)-16)/(log(2)(x-1)+1)/(log(2)(x-1)+2)/(log(2)(x-1)+3)≤0,(-3log²(x-1)-2log(2)(x-1) +5)/(log(2)(x-1)+1)/(log(2)(x-1)+2)/(log (2)(x-1)+3)≤0,(log(2)(x-1)-(2+√(4-4*3* 5))/-6)(log(2)(x-1)-(-1/3+√64/6))/(log(2)(x-1)+1)/(log(2)(x-1)+2)/(log(2)(x-1)+3)≥ 0,-°-3+°-2*-1 2/3+°-1-1*+>log(2)(x-1) log(2)(x-1)є(-3;-2)U[-1 2/3;-1)U[1;+∞) [x-1 >1/8,x-1<1/4;x-1≥1/2/4^(1/3),x-1≤1/2;x-1≥2;[x>1 1/8,x<1 1/4,x≥1+2^(-1 2/3),x≤1,5, x≥3;хє(1 1/8;1 1/4)U[1+2^(-1 2/3);1,5]U [3;+∞)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
х^(1/3/√х)=9^(1/9),х=9:9^(1/3/√9)=9 ^(1/9) е^(1/3*х^-0,5lnx)'=е^(1/3*х^-0, 5lnx)(-1/6x^-1,5lnx+1/3x^-0,5*1/x)=0, x^-1,5lnx-2x^-1,5=0,lnx-2=0,x=e^2 +*->x max=(e^2)^(1/3/e)=e^(2/3/e),e²<9,x=2^ (1/2/√2)=1+√2/4*1+√2/4(√2/4-1)/2!+... =1,35..+0,35*-0,325+...=1,24>9^(1/9)=(1, 3..)^(1/3)=1,1.. 7^(1/3/√7)=7^(1/3/2,65)= 7^(1/7,95)=1,32..^(1 1/159)>1,1..x=6,141
175
70
105
0,11375
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x->'=(3 -1;-1 3)x->+(4;4)e^2t x->(0)=(1 1) x->0'=(3 -1;-1 3)x-> (A-лI)x->0=0,|3-л -1;-1 3-л|=0,(3-л)²-(-1)²=0,[3-л=1,3-л=-1;[л=2,л= 4;(1 -1;-1 1)*(a b)=0,{a-b=0,-a+b=0;{a=b,a= b;(1;1)(-1 -1;-1 -1)(a b)=0,{-a-b=0,...;a=-b (1;-1) х->0=С1(1;1)е^2t+C2(1;-1)e^4t x-> p=(A;B)e^2t,2(A;B)e^2t=(3 -1;-1 3)(A B)e ^2t+(4;4)e^2t,(2A;2B)=(3A-B+4;-A+3B+4) {2A=3A-B+4,2B=-A+3B+4;{-A-B=4,A-B=4;{A=0,B=-4; xp->=(0;-4)e^2t x->=С1(1;1)е^ 2t+C2(1;-1)e^4t+(0;-4)e^2t (1 1)=C1(1;1) +C2(1;-1)+(0;-4)=(C1+C2;C1-C2-4){C1+ C2=1,C1-C2-4=1;{C1+C2=0,C1-C2=5;{C1=2,5,C2=-2,5; x->=(2,5;-1,5)e^2t+(-2,5; 2,5)e^4t
1
-
4x=|3x-|x+a||+9|x-3|≥0,x≥0[{x≥a/2,x≥-a,x≥ 3;a/7+27/7=x;{x≥a/2, x≥-a,x<3,x=-a/11+ 27/11;{x≥-a/4,x<-a,x≥3, a/7-27/7=x;{x≥-a/4,x<-a,x<3,x=a/9+3;{x<a/2,x≥-a,x≥3,-a/3+9 =x;{a>54/13,a<18,x=a/15+9/5;{a<-108/5, a≥-24,a+27=x;{a<-8 4/13,a>-24,x=-a/17+2 7/17;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(х-1)⁵+(х+3)⁵=242(х+1),(х-1+х+3)((х-1)⁴ -(х-1)³(х+3)+..+(х+3)⁴)-242(х+1)=0,2(х+1)((х-1)³(х-1-х-3)-4(х-1)(х+3)+х⁴+4х³*3+4!/2!/2!х²*3²+4х*3³+3⁴-121)=0,[х=-1,-4(х³-3х ²+3х-1)-4х²-12х+4х+12+х⁴+12х³+54х²+108х-40=0,-4х³+12х²-12х+4+х⁴+12х³+50х²+100х-28=0,х⁴+8х³+62х²+88х-24=0,(х²+4х +23)²-96х-553=0,240=240,х=-2,х³+6х²+50х-12=0,(х+2)³+38(х+2)-96=0,х+2=(48+2 √(87810)/9)^(1/3)+(48-2√(87810)/9)^ (1/3),х=-2+(48+2√(87810)/9)^(1/3)+(48 -2√(87810)/9)^(1/3){-2;-1;-2+(48+2√(8 7810)/9)^(1/3)+(48 -2√(87810)/9)^(1/3)}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
log(-x²+4x-3)(√3sin(π/x)+cos(π/x))=0,{-x²+4x-3>0,-x²+4x-3≠1,√3sin(π/x)+cos(π/x)>0;{(x-(-4+√(16-4*-1*-3))/-2)(x-(-4-√4)/ -2)<0+°-1°3+>x,-x²+4x-4≠0,sin(π/x+π/6)>0;{xє(1;3),х≠(-4±√(16-4*-1*-4))/-2,π/х+π/6є(2πn;π+2πn);{хє(1;3),х≠2,хє(1/(5 /6+2n);1/(-1/6+2n));хє(1;2)U(2;3).2sin(π/x+π/6)=1,sin(π/x+π/6)=1/2,[π/x+π/6=π/6+2πn,π/x+π/6=5/6π+2πn;[x=1/2/n,x=1/(2/3+2n);[0/,0/;0/
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{y=(1-x³)^(1/3),x⁵+(1-x³)⁵/³=1;(1-x)((1-x)²/³ (1+x+x²)⁵/³-1-x-..-x⁴)=0,[x=1,x=0,1+10x+5,4 x²+6,2x³+5,4x⁴+3x⁵+x⁶=0;x=-1,85,x=-0,11;(1;0)(0;1)(-1,85;(1+1,85³)¹/³)(-0,11;(1+0,11 ³)¹/³)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
32°-0,5a,2bcos(180°-a),2bsin(180°-a) tg(3 2°-0,5a)=(tg32°-tg0,5a)/(1+tg32°tg0,5a)= -tg0,5a(3-tg²0,5a)/(1-3tg²0,5a) tg³0,5a+2/(2-tg32°)tg0,5a+tg32°/(2-tg32°)=0 tg0,5a =(-tg32°/(2-tg32°)/2+√(tg²32°/(2-tg32°)²/4+(2/(2-tg32°))³/27))^(1/3)+(-0,5tg32°/(2-tg32°)-√(81(tg²32°-2tg32°)²+192-96tg3 2°)/(2-tg32°)²/18)^(1/3),a=2arctg((-tg32°/(2-tg32°)/2+√(tg²32°/(2-tg32°)²/4+(2/(2-t g32°))³/27))^(1/3)+(-0,5tg32°/(2-tg32°)-√ (81(tg²32°-2tg32°)²+192-96tg32°)/(2-tg32 °)²/18)^(1/3))+2π
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1,75 95, 75х=95,х=1,2(6), 1,75*1,2(6)=1,75*19/15=2,21(6)м
1575
175
33,25
1
-
1
-
1
-
1
-
1
-
1
-
$ln((x+1)(x³+4x²+7x+4))dx=$(ln(x+1)+ln ((x+1)(x²+3x+4))dx=2(x+1)ln(x+1)-2x+$ln((x+1,5)²+1,75)dx=2(x+1)ln(x+1)-2x+((x+1,5)²+1,75)/2/(x+1,5)ln²((x+1,5)²+1, 75)/2-$(0,15-0,4375/(x+1,5)²)ln²((x+1, 5)²+1,75)dx+C
5,11,11,4
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(373,15К;101325Па)(647,3К;22,1МПа)(273,16К;610Па) P=aT²+bT+c {a*373,15²+ 373,15b+c=101325,373,15b+1,576c=(101325-22,1*576²)/0,424, -0,79c=(101325-22, 1*576²)/0,424+(101325-610*1,3660²)/0,3 66;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x=(3-y)/(1+y) 3(1-y)/(3+y²)+(y²-3y)/(1+y)=max=-8 7467/17700;-1,19 min=-7,98;22,57 (-∞;-8 7467/1770 0]U[22,57;∞)
(-48,25-23,5y-40,25y²+(y³+y²+2,5y+ 3,5)²)/(3+y²)²/(1+y)²=0 y=1,55;-2,77;-2,64;1,76 +-2,77*-2,64-+1,55-1,76*+>y
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
√(50-h²) (√(50-h²)-2)²+h²=BC², BC=√(50-h²-4√(50-h²)+4+h²)=√(54-4√(5 0-h²)) 2*(2√(50-h²)-2)=6*.., ...=(4√(50- h²)-4)/6=2/3*√(50-h²)-2/3 (1/3*√(50-h ²)-1/3+3)²+(√(50-h²)-2)²=50, (50-h²)/9+2 /3*2 2/3√(50-h²)+(2 2/3)²+50-h²-4√(50-h²)+4=50, √(50-h²)(16/9-4)=-5 5/9+h²/9-64/9-50+h²-4+50≤0, (50-h²)*20²/9²=(1 1/9h²-16 6/9)²,h²≤16 2/3/(1 1/9)=(144+ 6)/10=150/10=15, h≤√15 20'000/81-40 0/81*h²-100/81*h⁴-(16 2/3)²+20/9*h²*16 2/3=0, h²=x, -100/81*x²+(-400+1000*3)/81 *x+20'000/81-125'000/27=0, x=(-2600/81±√(2600²/81²-4*(-100/81)*(20'000-125'000*3)/81))/(-200/81)=13±√(169+400*(20'000 -375'000)/40000)=13±√(169-355'000 /100)=13±√(169-3550)=13±√-3381 x≥0, h=√(13+√-3381) BC=√(54-4√(50-(13+ √-3381)))=√(54-4√(37-√-3381))
√((37+√(37²+3381))/2)=√(18,5+√(1369 +3381)/2)=√(18,5+√2750/2)=√(18,5+5 √110/2)
1
-
1
-
$(х2-1)/(х²+х+1)²*dx=arctg (x+0,5)/(√3/ 2)/(√3/2)-0,5(x²+x+1)^(-1)-0,5(ln|(x+0,5 -√-3/2)|/√-3-1/√-3ln|x+0,5+√-3/2|)=2√3/ 3*arctg (2√3/3x+√3/3)-0,5/(x²+x+1)-0,5(-∞(x+0,5-0,5√-3)^(-1)/-1+∞(x+0,5+0,5√-3)^(-1)/-1)=2√3/ 3*arctg (2√3/3x+√3/3)-0,5/(x²+x+1)-0,5∞/(x+0,5-0,5√-3)+0,5∞/(x+0,5+0,5√-3)= 2√3/3*arctg (2√3/3x+√3/3)-0,5/(x²+x+1)-0,5∞(-√-3)/(x²+x+1)=∞
(x²-1)(x²+x+1)²=(2Ax+A)/(x²+x+1)+B/(x²+x+1)+(2Cx+C)/(x²+x+1)²+D/(x²+x+1)² x²-1=(2Ax+A)(x²+x+1)+B(x²+x+1)+2Cx+ C+D, 2A=0, 2A+A+B=1, 2A+A+B+2C=0, A+ B+C+D=-1, A=0, B=1, C=-1/2 D=-1/2 a(x+0,5+√-3/2)²+b(x+0,5+√-3/2)(x+0,5-√-3/2)²+c(x+0,5-√-3/2)²+d(x+0,5-√-3/2)(x+0,5+√-3/2)²=1, b+d=0,
a+b(1-√-3+0,5+√-3/2)+c+d(1+√-3+0,5-√-3/2)=0, a(1+√-3)+b((0,5-√-3/2)²+(0,5+√-3/2)(1-√-3))+c(1-√-3)+d((0,5+√-3/2)²+(0, 5-√-3/2)(1+√-3)=0,*1/(1-√-3) a(0,5+√-3 /2)²+b(0,5+√-3/2)(0,5-√-3/2)²+c(0,5-√-3 /2)²+ d(0,5+√-3/2)²(0,5-√-3/2)=1,*1/(-0,5+0,5√-3)
d=-b, a+b(1,5-0,5√-3)+c+d(1,5+0,5√-3)=0, b(1,5-0,5√-3-(-0,5-√-3/2+0,5-0,5√-3+0,5√-3+1,5)/(1-√-3))+d(1,5+0,5√-3-1/(1-√-3)(-0,5-0,5√-3+0,5+0,5√-3-0,5√-3+1,5))=0, b(1,5-0,5√-3-1/(-0,5+0,5√-3)(0,5+0,5√-3)(-0,5-0,5√-3))+c(1-(-0,5-0,5√-3)/(-0,5+0,5√-3))+d(1,5+0,5√-3-(-0,5+0,5√-3)(0,5-0,5√-3)/(-0,5+0,5√-3))=-1/(-0,5+0,5√-3),*(1,5-0,5√-3-(1,5-0,5√-3)(1+√-3)/4)/(1,5-0,5√-3+(-0,5+0,5√-3)/(-0,5+0,5√-3)) d=-b, a+b(1,5-0,5√-3)+c+d(1,5+0,5√-3)=0, b(1,5-0,5√-3-(1,5-0,5√-3)/(1-√-3))+d(1,5+0,5√-3-(1,5-0,5√-3)/(1-√-3))=0, -(1-0,25-0,75)(1,5-0,5√-3-1,5/4-1,5√-3/4 +0,125√-3+0,125*(-3))/(2,5-0,5√-3)c+((1,5+0,5√-3-(1,5-0,5√-3)(1+√-3)/4)-(1,5+0,5√-3-0,5+0,5√-3)(0,75-0,75√-3)/(2,5-0,5√-3))d=1/(-0,5+0,5√-3)*(0,75-0,7 5√-3)(2,5+0,5√-3)/7,
d=-b, a+c=0, b(0,75+0,25√-3-(0,75+1,25√-3))=0,b=0,d=0 c=(1,5-1,5√-3)(2,5+0,5√-3)/7/(-1+√-3)/0=(3,75+0,75√-3-3,75√-3-0,75(-3))(1+√-3)/-28/0=(6-3√-3)(1+√-3)/0=(6+6√-3-3√-3-3(-3))/0=(12+3√-3)/0=∞, a=-∞, -∞/(x+0,5-√-3/2)²+∞/(x+0,5+√-3/ 2)²
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x1²-4(p+x1²)>0, -3x1²>4p, x1²<-4p/3, x1e(-√(-4p/3);√(-4p/3)) (-q/2+√(q²/4+p³/27))^(2/3)-2p/3+(-q/2+√(q²/4+p³/27))^(2/3)<-4p/3, (q²/2+p³/27-q√(q²/4+p³/27))^(1/3)+(q²/2+p³/27+q√(q²/4+p³/27))^(1/3)<-2p/3, q²/2+p3/27-q √(q²/2+p³/27)<-8p³/27-3(-2p/3)²(q²/2+p³/27+q√(q²/4+p³/27))^(1/3)+3(-2p/3)(q²/2+p³/27+q√(q²/4+p³/27))^(2/3)-q²/2-p³/27-q√(q²/4+p³/27),q²+10p³/27<-4p²/3(q²/2+p³/27+q√(q²/4+p³/27))^(1/3)-2p (q²/2+p³/27+q√(q²/4+p³/27))^(2/3)=-2p ((q²/2+p³/27+q√(q²/4+p³/27))^(1/3)+p/3)²+2p*p²/9,p<0 (q²/4+p³/27),√(-0,5q²/p-2p²/27)<(q²/2+p³/27+q√(q²/4+p³/27))^(1/3)+p/3,-0,5q²/p-2p²/27>=0, q²+4p³/27≥0,(√(-0,5q²/p-2p2/27)-p/3)³<q²/2+p³/27+q√(q²/4+p³/27), (-0,5q²/p-2p²/27)¹,⁵+3(-0,5q²/p-2p²/27)(-p/3)+3(-0,5q²/p-2p²/27)⁰,⁵p²/9-2p³/27-0,5q²<q√(q²/4+p3/27), 0,5q²/p+2p²/27-2p³/27-0,5q²<(√(-2/p)(0,5q²/p+2p²/27)-3√(-2/p)p²/9+q)√(q²/4+p3/27), (0,5q²+2p³/27)²(1/p-1)²<(√(-2/p)0,5q²/p-7p²/27*√(-2/p)+q)²(q²/4+p3/27), D<0,-<+ D>0,p<0
1
-
1
-
@Vaska.Uticha -0,5x²+0,5ax+9>0 (x-(0,5a-√(0,25a²+18))(x-(0,5a+√(0,25a ²+18)))<0,x(0,5a-√(0,25a²+18);0,5a+√(0, 25a²+18)),x[0;a]{0,5a<√(0,25a²+18), √(0,25a²+18)<0,5a;0/.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{x²-2x-1=±(x-1), x²-3x=0, x=0,
x≥1, [x²-x-2=0,x=3,
x<1, {x≥1,. [x=(1±√9)/2,
0/. {x≥1,
x=3,
x=2,
1
-
1
-
{x²+3ax+3≥0,0=(x+1,5a)⁴+(-4,5a²-1)(x+1,5a)²+3a(x+1,5a)+81/16a⁴-9/4 a²;(z-0,75a²-1/6)³+(-27/16a⁴+3/8a²+1/48)(z-0,75a²-1/6)+(-9/8a⁴+5/8a²+7/144)(0,75a²+1/6)-9a2/64=0 z-0,75a2-1/6=((9/16a⁴-5/16a²-7/288)(0,75a²+1/6)+9a²/128+√(((-9/8a ⁴+5/8a²+7/144)(0,75a²+1/6)-9a²/64)²/4+(-27/16a⁴+3/8a²+1/48)³/27))¹/³+(..-..)..=1/2√(9a⁴-2a²-1/9)c os(1/3arccos((27a⁶-9a⁴-7/27)/(9a ⁴-2a²-1/9)¹,⁵)+2/3πn) z=0,75a²+1/6+1/2√(9a⁴-2a²-1/9)c os(1/3arccos((27a⁶-9a⁴-7/27)/(9a ⁴-2a²-1/9)¹,⁵)+2/3πn){|a|≥√(1+√2)/3,a⁶-17/54a⁴-2/243a²-25/9⁴≥0;a∈(-inf;-√((√267665/(59049*2√2)+14849/4251528)^(1/3)+361/26244/(√267665/(59049*2√2)+14849/4251528)^(1/3)+17/162)]⋃[sqrt((√267665/(59049*2√2)+14849/4251528)^(1/3)+361/26244/(√267665/(59049*2√2)+14849/4251528)^(1/3)+17/162);inf),а(-∞;(-1-√2)/3]U[(1 +√2)/3;∞),x=-1,5a+|a|/a)-√(0,75a²+1/6+1/2√(9a⁴-2a²-1/9)c os(1/3arccos((27a⁶-9a⁴-7/27)/(9a ⁴-2a²-1/9)¹,⁵)))+√(0,75a²+1/6+1/2√(9a⁴-2a²-1/9)c os(1/3arccos((27a⁶-9a⁴-7/27)/(9a ⁴-2a²-1/9)¹,⁵)+2/3π))+√(0,75a²+1/6+1/2√(9a⁴-2a²-1/9)c os(1/3arccos((27a⁶-9a⁴-7/27)/(9a ⁴-2a²-1/9)¹,⁵)+4/3π)));-1,5a+|a|/a(√ -√+√);-1,5a+|a|/a(√+√-√);..+(-√-√-√) -√(0,75a²+1/6+1/2√(9a⁴-2a²-1/9)cos(1/3arccos((27a⁶-9a⁴-7/27)/(9a⁴-2a²-1/9)¹,⁵)))√(0,75a²+ 1/6+1/2√(9a⁴-2a²-1/9)cos(1/3arcc os((27a⁶-9a⁴-7/27)/(9a⁴-2a²-1/9)¹, ⁵)+2/3π))-√(0,75a²+1/6+1/2√(9a ⁴-2a²-1/9)cos(1/3arccos((27a⁶-9a⁴-7/27)/(9a⁴-2a²-1/9)¹,⁵))))√(0,75a²+ 1/6+1/2√(9a⁴-2a²-1/9)cos(1/3arcc os((27a⁶-9a⁴-7/27)/(9a⁴-2a²-1/9)¹, ⁵)))+√(0,75a²+1/6+1/2√(9a⁴-2a² -1/9)cos(1/3arccos((27a⁶-9a⁴-7/27)/(9a⁴-2a²-1/9)¹,⁵)+2/3π))√(0,75a²+ 1/6+1/2√(9a⁴-2a²-1/9)cos(1/3arcc os((27a⁶-9a⁴-7/27)/(9a⁴-2a²-1/9)¹, ⁵)+4/3π)))>=-1,75
A>=b=>c,a(-1)≤-c,
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
у=(5а+10(15-а)х)/((10х+а)²+25) Еу[0;1] у'=1000((15-а)(х+0,1а-1)²-11,25+2,75а-0,2 а²))(х+0,1а))/((10х+а)²+25)²=0 х=-0,1а+1 ±√((11,25-2,75а+0,2а²)/(15-а))а<15+**+ >х мин=(а²-20а+150+10(15-а)√((11,25-2, 75а+0,2а²)/(15-а)))/(8√((11,25-2,75а+ 0,2а²)/(15-а))+(1170-161а+5,8а²)/(15-а) ²)/25≥0, (а²-20а+150+10√((11,25-2,75а+ 0,2а²)(15-а)))/(8√((11,25-2,75а+0,2а²)(15 а))(15-а)+1170-161а+5,8а²)≥0 Макс=(а²-20а+150+10(а-15)√((11,25-2, 75а+0,2а²)/(15-а)))/(-8√((11,25-2,75а+0, 2а²)/(15-а))+(1170-161а+5,8а²)/(15-а)²)/25≤1
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x=(-5a+8±3a)/4=-0,5a+2;-2a+2 {(x+0,5a-2)(x+2a-2)≤0+*-*+>x,x≤a+2,≥a-1;[{a[0;1],x[-2a +2;-0,5a+2];{a[1;2], x[a-1;-0,5a+2];{a<0, x[-0, 5a+2;a+2];
1
-
{3|x-2|+|ax+2a+2|=3,ax+2a+2=y;(a+0,5)/a?0+°-°+>a [{a[0;1/4],x=(-2a+7)/(a+3),(15a+ 6)/(a+3)=y;{a[0;1/4)U(3;∞),x=(-2a-5)/(a-3),(-9a-6)/(a-3)=y;{a[-5/4;-0,5),x=(2a+11)/(-a+3),(15a+6)/(-a+3)=y;{a(-3;-2/3],x=(-2a+1)/(a+3),(19a+6)/(a+3)= y;{a<-0,5,x=(-2a-5)/(a-3),(3a-6)/(a-3)=y;{a[-0,5;-0,4),x=(2a+11)/(3-a),(15a+6)/(3-a) =y;{@(-0,4;0),x=(-2a+7)/(3+a),(15a+6)/(a+ 3)=y;{a[-0,5;0),x=(-2a-5)/(-3+a),(-9a-6)/(a- 3)=y;
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
P(x)=Ei=1;nai*x^i Ei=1;nai*(x^2-1)^i=(Ei=1;nai*x^i)²+1 a1;2+..a(n-2)+an=(-1)^n,0=a(n-1), 0=a(n-3),..,[n:2,a1=0;n:/2,a2=0; an=-2a(n-2)=(-2)^[n/2]a(2{n/2})= [(-2)^((n-1)/2)a1,n:/2;(-2)^((n-2)/2) a2,n:2; P(x)=a1((-2)^((n-1)/2)x^n+(- 2)^((n-3)/2)x^(n-2)+..+x),n:/2;a1((- 2)^((n-2)/2)x^n+(-2)^((n-4)/2)x^(n-2) +..+x²),n:2
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
3'900'000,3,9*10⁶*1,5+x,3,9*10⁶*1,5⁴+x(1,5³+1,5²+1,5+1) 3,9*10⁶*1,5⁵+x(1,5⁴+1,5³+1,5²+1,5)=3,9*10⁶*8,25
x=210*10³(руб.)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x²+4xy+y²+1/4=0, x=(-4y±√(16y²-4*(y²+ 1/4)))/2=-2y±√(16y²-4y²-1)/2=-2y±√(12y²- 1)/2,12y²-1≥0,(y-1/√12)(y+1/√12)≥0, +**+>y,yє(-∞;-1/√12]U[1/√12;+∞) √(1-4(-2y±√(3y²-1/4))²)-√(1-4y²)-2x -2y=0,√(2-28y²±16y√(3y²-1/4))-√(1-4y²)+2y-+2√(3y²-1/4)=0,2-28y²±16y√(3y²-1/4)-2√(2-28y²±16y√(3y²-1/4))√(1-4y²)+1-4y²=4y²±8y√(3y²-1/4)+4(3y²-1/4),±8y√(3y²-1/4)+4-48y²-2√(2-28y²±16y√(3y²-1/4)√(1-4y²)=0,64y²(3y²-1/4)±16y√(3y²-1/4)(4-48y²)+(4-48y²)²=4(2-28y²±16y√(3y ²-1/4)) 2496y⁴-288y²+8=±768y³√(3y²-1/ 4) 2496²y⁸+288²y⁴+8²-2*2496*288y⁶+ 2*2496*8y⁴-2*288*8y²=768²y⁶(3y²-1/4), (312²-96²*3)y⁸+(-624*36+96²/4)y⁶+(1296 +624)y⁴-72y²+1=0,y²=a,≥0,aє[1/12;1/4]144*(26²-64*3)a⁴+144(-52*3+16)a³+1920a²-72a+1=0,144*16*157a⁴-144*140a³+1920a²-72a+1=0, (а²-35/8/157а+0,00226..)² 7,28*10^-5а-4,29*10^-6=0,\>/> минимум а=35/8/157/2=35/16/157,-1,01*10^-6<0 поэтому есть 2 корня, а=0,014,а=0,010 у=±0,12..>0,289,<-0,289,у=±0,101>0,288,<-0,289 0/
169-12=157
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
√(a²-x²)=a+√(a²/4-(a-x)²),a²-x²=5/4*a²-a²+2ax-x²+2a√(-3/4*a²+2ax-x²),(3/4*a²-2ax)²=4a²(-3/4*a²+2ax-x²), 9/16*a⁴-3a³x+4a²x²+3a²-8a³x+4a²x²=0, 8a²x²-11a³x+9/16*a⁴+3a²=0, x=(11a³±√(121a⁶-32a²(9/16*a⁴+3a²)))/16/a²=11a/16±√(103a²-96)/16,/_а=arcsin(5/16*а±√(103а²-96)/16)/(0,5а) S=0,5arcsin(5/16*а±√(103а²-96)/16)/(0,5а)a²/4-0,5(a/2)²(5/8±√(412-384/a²)/8)+a²/2*arccos(11/16±√(103a²-96)/16)-0,5a²sin(arccos(11/16±√(103a²-96)/16)=0,125arcsin(5/8±√7/4)-0,125(5/8±√7/4)+0,5arccos(11/16±√7/16)-0,5√(1-(11/16±√7/16)²)=0,125arcsin(5/8±√7/4)-0,078125-+0,03125√7+0,5arccos(11/16±√7/16)-0,5√(43/128-+11√7/128) 256-121-49=86
А Карл Фридрих Гаусс тоже думал над геометрией Лобачевского, но только его бы просто не поняли.
1
-
1
-
x²+4x=y,(y-2 1/4)(y+1 3/4)<0
+-1,75°-°2,25+>y y(-1,75;2,25){(x+0,5)(x+3,5)>0+°-3,5-°-0,5+>x,(x-0,5)(x+4,5)<0+°-4,5-°0,5+>x; {x(-∞;-3,5)U(-0,5;∞),x(-4,5;0,5);x(-4,5;-3,5)U(-0,5;0,5)✓
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
(x²-3x-5,5)²+25x-81,25=0 1,5+√31/2є/Q \1,5-√31/2(-25√31/2-43,75)*/1,5(16,312 5)*\*1,5+√31/2(12,5√31-43,75)/ x=-√31 -0,25;1,5-32,625/(119,565+25√31)
1
-
1
-
1
-
1
-
1
-
1
-
3,6/0,3=12 4²=1²+l²-2lcosa,4²=3²+l²-2*3lc os(180°-a),cosa=(l²-15)/2/l, 16=9+l²+6(l²-15)/2/l*l,-3l²+52=0,l=√(52/3) √(52/3)/13,√(52/3)*12/13 √((2√(13/3)/13+2*12√(13/3)/13+3)/2(√(13/3)+1,5 -2√(13/3)/13)(√(13/3)+1,5-2√(13/3)* 12/13)(√(13/3)+1,5-3))=√(√(13/3)+1,5)(11/13√(13/3)+1,5)(-11√(13/3)/13+1,5)(√(13/3)-1,5))=√((13/3-2,25)(2,25-121*1 3/3/169))=√(2 1/12*(-133/156))=5/2/6 √(133/13),√((2√(13/3)/13+24√(13/3)/13+4)/2(√(13/3)+2-2√(13/3)/13)(√(13/3)+2-24√(13/3)/13)(√(13/3)+2-4)=√((2√(13/3)+2)(11√(13/3)/13+2)(-11√(13/3)/13+2)(√(13/3)-2))=√((4*13/3-4)(4-121*13/3/1 69)=2√(10/3*35/39)=10/3√(14/13) √3/4*4²-4√3*1/4-5/12√(133/13)-10/3√(14/13)=3√3-5/12√(133/13)-10/3√(14/13)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
x+y±√(xy)=a,√y²±√x√y+x-a=0,
x2+y²+xy=b2,√y=(-+√x±√(x-4(x-a)))/2,
z=±√(xy),y=(x-3x+4a-+2√(x(-3x+4a)))/4,
x²+(x-3x+4a-+2√(x(-3x+4a)))²/4²+x(x-3x+4a-+2√(x(-3x+4a)))/4=b²,16x²+(-2x+4a)²-+4(-2x+4a)√(-3x²+4ax)+4(-3x²+4ax)+4x(-2x+4a-+2√(-3x²+4ax))= 16b²,16a√(-3x³+4ax)=-20x²+16xa-16a²+12x²-16ax+8x²-16xa+16b²,|:4,16a²(-3x²+4ax)=(-4xa-4a²+4b²)²,|:16 -3x²a²+4a³x=x²a²+a⁴+b⁴+2xa³-2xab²-2a²b²,-4x²a²+2a³x-a⁴-b⁴+2xab²+2a²b²=0, x=(-2a³-2ab²±√((-2a³-2ab²)²-4*(-4a²)(-a⁴-b⁴+2a²b²)))/(-8a²)=0,25+0,25b²/a±√(1/16*a⁶+2/16a⁴b²+1/16a²b⁴-1/4*a⁶-1/4*a²b⁴+2/4*a⁴b²)=0,25+0,25b²/a±a√(-3/16*a⁴-3/16*b⁴+5/8a²b²),y=(-2(0,25+0,25b²/a±a√(-3/16*a⁴-3/16*b⁴+5/8 *a²b²))+4a-+2√(-3(0,25+0,25b²/a±a√(-3/16*a⁴-3/16*b⁴+5/8a²b²))²+4(0,25+0,25b²/a±a√(-3/16*a⁴-3/16*b⁴+5/8 *a²b²))a))/4,z=±√((0,25+0,25b²/a±a√(-3/16*a⁴-3/16*b⁴+5/8a²b²))(-0,5-0,5b²/a-+2a√(-3/16a⁴-3/16b⁴+5/8a²b²)+4a-+2√(-3(0,25+0,25b²/a)²-+6a(0,25+0,25b²/a)√(-3/16a⁴-3/16b⁴+5/8a²b²)-3(-3/16a⁴-3/16b⁴+5/8a²b²)+a+b²±4a²√(-3/16a4-3/16b4+5/8a²b²)))/4)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
3^log0,6(log(3)5)-5^log0,6(log(3)5)≥3^x-5^x=4(x-0,75)²-2,25≥-2,25 1 koren x[0,75; ∞)х=1(-2=-2),хє[-log3(5);0,75)\>=\> х=0 x<log(0,6)log3(5),/>=\>x=-1,7 0/ {1;0}
1
-
1
-
1
-
1
-
1
-
1
-
1
-
$√(x²+x+1)/(x+1)dx-х+ln|x+1|+c
√(x²+x+1)=u,x=-0,5±√(u²-0,75) dx=±(u²-0,75)-⁰,⁵udu
$(±0,5(u²-0,75)⁰,⁵±0,375(u²-0,75)-⁰, ⁵)/(1-u²)du+u+0,5ln|u-1|-0,5ln|u+1|
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
sin(A-B)=3/5,sinA=2sinB ±√(1-4sin²B)sinB=sin2B-3/5 B=-0,5arccos(4/√41)+0,5arcsin (6,2/√41)(-1)^n+0,5πn(0;180°) B=-0,5arccos(4/√41)+0,5arcsin (6,2/√41);-0,5arccos(4/√41)+0,5π- 0,5arcsin(6,2/√41) A=π-arcsin(2sinB);arcsin(2sinB) (a+b)/c=3/(2cosB+cosA)=1/5√205; 3/√5✓ C)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
z=x²-xy+2y²+3x+2y+1 x=0,y=0,y=-x-5 z'(x)=2x-y+3=0 x=0,5y+1,5 z'(y)=-x+4y+2 =0 y=x/4-0,5 x=0,5(x/4-0,5)+1,5 x=1,25/(7/8)=10/7 y=-1/7 (10/7;-1/7) *+>x*+>y min(10/7;-1/7) z(0;0)=1,z(-5;0)=9 z(0;-5)= 41 4x²+26x+41=4(x+3,25)²-5/4≥-1,25
1
-
$√tgxdx=$u/(u⁴+1)*2udu=$2u²/((u²+1) ²-2u²)du=$2u²/(u²+1+√2u)/(u²+1-√2u)*du =$(A(2u+√2)/(u²+√2u+1)+B/((u+√2/2)²+0,5)+C(2u-√2)/((u-√2/2) ²+0,5))+D/((u-√2/2)²+0,5))du=2arctg ((u+√2/2)/√0,5)/√0,5+C=2√2arctg(√2 √tgx+1)+C
2u²=A(2u+√2)(u²-√2u+1)+B((u-√ 2/2)²+0,5)+C(2u-√2)((u+√2/2)²+0,5))+D((u+√2/2)²+0,5)=2Au³-2√2Au²+2Au+√2Au²-2Au+√2A+Bu²-√2Bu+B+2Cu³+2√2Cu²+2Cu-√2Cu²-2Cu-√2C+Du²+√2Du+D=(2A+2C)u³+(-2√2A+2A+B+√2C+D)u²+(-√2B+√2D)u+√2A+B+D-√2C {2A+2C=0, (-2√2+2)A+B+√2C+D=2,|*2/(-2√2+2)-√2B+√2D=0, √2A+B-√2C+D=0|*√2;{2A+2C=0, (√2+1)B+(4+√2)C+(√2+1)D=2√2+2,-√2B+√2D=0,|*(√2+1)/ -√2 (-√2)B+4C-√2D=0;|•(√2+1)/-√2 {2A+2C=0, (√2+1)B+(4+√2)C+(√2+1)D=2√2+2,(4+√2)C+(2√2+2)D=0, (8+3√2)C=0;{A=0,B=2,C=0,D=0;
√tgx=u, tgx=u², x=arctgu² dx=1/((u²)²+1)* 2udu
1
-
1
-
1
-
1
-
1
-
1
-
1
-
|(0;8)√6/4(y³/6*π+y³,⁵/10,5lny-y³,⁵/10,5/3,5+(π/6+ln2/3)y²,⁵/1,5-ln2/ 10,5y³,⁵-y²,⁵/7,5lny+y²,⁵/7,5/2,5)= √6*64/3π+7'552√3/105ln2-37'756√3/49/75+(π/18+ln2/9)*128√3
1
-
1
-
(х⁰,⁵+х-⁰,⁵)⁷-5(х⁰,⁵+х-⁰,⁵)⁵-(х⁰,⁵+х-⁰,⁵)³+5(х⁰,⁵+х-⁰,⁵)=0[(х⁰,⁵)²-+√5х⁰,⁵+1=0;х⁰,⁵=(±√5±1)/2≥0 х=(3±√5)/2
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
90°-1,5b=/_B=/_C 90°-1,5b-2o, 90°-1,5b-o AB/sin(2b+2o)sin(2b) AB/sin(b+o)sinb 2ABsin(1,5b) AB/sin(b+o)sinb/sin(90°-1,5b-2o)=AB/sin(2b+2o)sin(2b)/sin(90°-1,5b-o) 0,5b+2o=±0,5b+2πn[o=0,×.x=180°-b=120°A)(?)
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
{logx+(logx+8logy)/(log²x+log²y)=2,logy+ (8logx-logy)/(log²x+log²y)=0;{log³x+logx log²y+logx+8logy=2log²x+2log²y,log²xlogy-log³y+8logx-logy=0;{log²y(logx-2)+8logy +log³x-2log²x+logx=0,log²xlogy-log³y+8logx-logy=0;{logy=(-8±√(64-4(logx-2)(log³x 2log²x+logx)))/2/(logx-2),[log²x(-8+√(-4lo g⁴x+16log³x-20log²x+8logx+64)/(2logx-4) -(-8+√(-4log⁴x+16log³x-20log²x+8logx+64)³/(2logx-4)³+8logx-(-8+√(-4log⁴x+16log³ x-20log²x+8logx+64)/(2logx-4)=0; log²x(-8-√(-4log⁴x+16log³x-20log²x+8logx+64)/(2logx-4)-(-8-√(-4log⁴x+16log³x-20lo g²x+8logx+64)/(2logx-4)+8logx-(-8-√(-4lo g⁴x+16log³x-20log²x+8logx+64)/(2logx-4) =0;(log²x-2logx+1/2)²-16,25≤0,(log²x-2lo gx-√16,25+0,5)(log²x-2logx+0,5+√16,25) ≤0,(logx-(2+√(4-4(-√16,25+0,5)))/2)(logx (2-√(4√16,25+2))/2)≤0,+*-*+>logx logxє [1-√(√16,25+0,5);1+√(√16,25+0,5)],[logx=0,logx=1,logx=2,logx=3,12,logxє [1-√(√16,25+0,5);1+√(√16,25+0,5)];[logx=0,=1,=2,=3,12;[x=1,x=10,x=100,x=1 0³,¹²;[y=1,y=10000;y=1,y=10⁸,y=10^(-1/4), y=10^(-25/7+√81678,7456/224),y=10^(-25/7-√81678,224).
1
-
1
-
1
-
1
-
1
-
1402,701,700,350,175',174,87,86,43,42',21,20,10,5,4' 21+20(1/2^4-1)/(1/2-1)=60
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
y''+(1-2/t)y'+y/t=0 (u'+0,5-1/t)'+(u'+0,5-1/t)²=0,25-2/t+2/t² (u'+0,5-1/t)-¹/-1+t=c u'+0,5-1/t=1/(t-c) ..=c1t-¹+c2 -c1t-²+c1²t-² +2c1c2t-¹+c2²=2/t²-2/t+0,25{[c1=2, c1=-1; c1=-+2,c2=±0,5;{c1=2,c2=-0,5; u'+0,5-1/t=2t-¹-0,5 [u=-0,5t+ln|t|+ln|t-c|+c1,u=-t+3ln|t|+c1;[y=e^(-0,5t)t(t-c)c1, y=e^(-t)t³c1.
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1
-
1