Hearted Youtube comments on Mathologer (@Mathologer) channel.
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
Hallo Burkard,
Ich schreibe Dir einfach mal auf Deutsch, weil mir das ein bisschen einfacher fällt.
Ich möchte Dir einfach mal Danke sagen! Dein Video zur quadratischen Reziprozität hat mich zum ersten Mal mit der modularen Arithmetik in Kontakt gebracht und, was soll ich sagen, jetzt bin ich im JugendForscht-Wettbewerb (in der Altersparte "Schüler Experimentieren", weil ich noch etwas jünger bin...) Landessieger in Berlin mit einem Projekt aus dem Fachbereich Mathematik, inspiriert durch Dich! Falls es Dich interessiert, die Preisverleihung ist auf dem Youtube-Kanal des innoCampus der TU Berlin zu finden. (Es ist ja alles digital gewesen; ich bin ab 40:24).
Es ist wirklich schön und auch irgendwie beeindruckend, was für ein Projekt aus dieser Inspiration und diesem tollen Video entstanden ist. Ich weiß noch, als ich diesen ersten "Wow!"-Moment hatte und bis nach Mitternacht wach war, um die ersten Ansätze auszuarbeiten. Ich finde es überwältigend, was die Mathematik bisher alles Großartiges bereitgehalten hat, was ich dann entdecken durfte, und das alles nur Dank Dir! Ich bin mittlerweile sogar soweit, dass wieder einen Bogen zur quadratischen Reziprozität selbst bekommen habe! ;)
Aber auch generell möchte ich Dir einfach mal danken für Deine tollen Videos, die mir durch diese schöne Mathematik immer wieder den Tag versüßen, wenn nicht sogar der Höhepunkt sind!
Sollte Dich vielleicht interessieren, was ich so gemacht habe, kannst Du mich gerne kontaktieren!
Viele Grüße und noch einen wunderschönen Tag, Tim
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
Hero's formula for the area of a triangle is one of those things introduced as a curiosity in a math textbook way back in middle school that I never really got a handle on. To a sixth grader, that is an impressively complex formula for an ancient to have discovered, and no proof was forthcoming. Through high school I saw it a couple more times, always in passing, a sort of neat oddity that seems compact but rarely gets used in practice. It was really neat to see an intuitive proof and motivation after all these years.
That said, it doesn't exactly seem useful. Even if you somehow do know the lengths of a triangle but not its angles, this formula is still not the fastest way to find the area. Typically, if you're doing this by hand, you will either have a table of square roots (for Hero's method) or of logs and logs of sines (for the law of sines method). That method is still faster, because you skip all the multiplication steps. If you want to compute the area of the triangle with a computer, you can use Newton's method to get the square root, and I assume Heron's formula really is faster. But the thing is, you basically never know all the side lengths of a triangle (and nothing else) before trying to find its area. Rather, you probably have coordinates, in which case the shoelace formula is by far the fastest.
So like, what is this formula actually good for? Is it just a novelty like the quartic formula? If it's never used, then no, I don't think it should be taught as part of a standard curriculum. The brief mentions in books for interested students are probably enough. There is so much I want to add to the math curriculum, and the curriculum is already packed as it is. It's hard to justify cramming in more random formulas to teach, prove, and memorize.
(BTW, although the phrase "Heron's formula" is seen pretty often in mathematical texts, in pretty much all other contexts in English, "Hero" is far more common than "Heron." Similarly, we say "Plato" rather than "Platon." The practice of Latinizing ancient Greek names is pretty standard in English. In classical Latin, the nominative singular would be "HERO," and the genitive singular would be "HERONIS." Since the Latin stem is still Heron-, the English adjective would be "Heronic" rather than "Heroic." Again, that's like the adjective "Platonic" rather than "Platoic. Other examples include "Pluto/Plutonic" and "Apollo/Apollonic." Admittedly, there are some exceptions, like the word "gnomon.")
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8
-
8