Hearted Youtube comments on Technology Connections (@TechnologyConnections) channel.
-
702
-
701
-
701
-
701
-
698
-
695
-
694
-
689
-
687
-
686
-
671
-
670
-
658
-
644
-
639
-
639
-
631
-
629
-
623
-
623
-
620
-
617
-
613
-
589
-
582
-
578
-
RE: chroma dots @6:27.
Your speculation is correct. The chroma signal is encoded by "wiggling" (modulating) the Y signal within that range.
I find it helps to understand this by looking at the signal from the perspective of the TV doing the decoding.
A black and white TV has two radio demodulators, one that locks onto the sound sub-carrier to demodulate the sound (which is FM encoded) and one to lock onto the video sub-carrier and demodulate the video signal (aka, Luminance or Y), which is actually AM encoded. These two radio demodulators are essentially independent, apart from the fact they are tuned to two signals that are right next to each other on the dial.
Early TVs are actually really simple, electronically. All they do is take the output of the video demodulator (which is a nice voltage between 0v and 1v), detect the horizontal and vertical sync pulses (which are used to lock the frequency/phase of the two flyback transformers controlling the CRTs vertical and horizontal scanning) and then send the remaining signal directly to the CRT's electron gun to control the brightness of the electron beam at that position. 0.33v Represents black, 1v represents white, while 0v represents a sync pulse.
The most logical way of adding color to such a system would be to add a 3rd radio demodulator, one which picked up 3rd sub-carrier and decoded a chroma signal. But this would make the TV signal take up more bandwidth, and the FCC had already allocated 6Mhz channels. Additionally, you would have to replace all the black and white video equipment in the recording studios and transmitters to carry and transmit this extra signal.
So instead, the two demodulators are left untouched and the chroma signal is actually modulated on top of the Y (aka Luminance, Black&White) signal to create a combined Luminance/Chrominance signal (which replaces the Y signal and decodes fine as a Y signal on old Black and White TVs). Color TVs actually have to demodulate the demodulated the combined Y/C (Luminance/Chrominance) signal a second time to extract the chroma I and Q signals.
The chroma signal is encoded in the high frequency of this combined Y/C signal. A black line on the TV would have a Y/C with a constant 0.33v across the entire line. A white line would have a Y/C signal of a constant 1v across the entire line. For a solid colored line (say bright-green) the Y/C signal will fluctuate between 0.93v and 1.07v at a rate of 3.58 mhz. The phase difference between those fluctuations and the 3.58 Mhz color burst signal at the start of the line encode the hue of the color, with 225° representing green (178° for Yellow, 100° for Red, 0° for blue). The height of the fluctuations represent the saturation of the color (±0.07v represent 100% saturation and ±0v would be 0% saturation, or grayscale). The average height of the Y/C signal of course represents the luminance.
For complex lines with multiple colors, the fluctuations in Y/C won't be a constant 3.58 mhz, as it will speed up and slow down rapidly to change into the correct phase for the color at each location on the screen.
To decode this complex signal, first Color TVs have to split the Y/C signal by frequency. Early Color TVs would have used a Notch Filter, with a range of frequencies around 3.58Mhz (say 2.8Mhz to 4.1Mhz) being extracted as the chromance, while the rest (say 0 to 2.8Mhz and then 4.1Mhz to ~5.5Mhz) being interpreted as Luminance.
Frequency in a luminance signal is the rate of change of brightness across the line. A solid color across the line would have a frequency of 0hz. An image with vertical b&w bars across the screen, each about 1/10th of the screen wide, would have a frequency of 0.2 Mhz. With vertical bars 1/100th of the screen wide the frequency would be 1.9 Mhz. If you had vertical bars which were were about 1/188th of the screen wide, a color TV would actually interpret it as color infomation and show a solid color. (A number of 8bit computers like the Apple II actually took advantage of this to create color). But as the width of of the vertical bars got thinner and the frequency increased over 4mhz, they would become visible as black and white bars again.
Modern TVs use Comb Filters that use the infomation from previous and following lines to extract a much better Luminance signal that preserves most detail even around 3.58mhz. See this document for more details: https://www.intersil.com/content/dam/Intersil/documents/an96/an9644.pdf
So what are chroma dots? They are simply the actual chroma infomation which has been modulated right in the middle of the luminance signal. B&W TVs that were manufactured after NTSC was standardized are meant to the same notch filter that color TVs use, and simply discard the infomation with that frequency.
574
-
572
-
564
-
558
-
553
-
545
-
539
-
535
-
524
-
523
-
517
-
516
-
510
-
508
-
508
-
508
-
504
-
496
-
488
-
482
-
477
-
468
-
465
-
465